Abstract

This study aims to reduce energy consumption and optimize indoor air quality in thermally conditioned buildings through a numerical analysis of air quality in a rectangular chamber ventilated by air displacement. The lattice Boltzmann multiple relaxation time (LBM-MRT) method was employed to simulate the physical behavior of a rectangular room with heating applied to its left vertical wall. A porous partition was introduced at the center of the floor. The extended Darcy–Brinkman–Forchheimer model was applied to model the porous medium. Computational simulations were conducted over a range of characteristic numbers. The results indicate that optimal thermal dissipation conditions in a ventilated cavity with a porous separator are achieved at moderate Reynolds numbers (250) and high Rayleigh numbers (106). Thermal comfort is realized when natural convection dominates the flow dynamics. Moreover, in a porous medium with low permeability (106), natural convection leads to a pollutant displacement efficiency twice that of forced convection, irrespective of the buoyancy ratio. These findings underscore the significance of integrating ventilation systems with porous materials to achieve energy-efficient indoor environments.

References

1.
Gorina
,
L.
,
Korneeva
,
E.
,
Kovaleva
,
O.
, and
Strielkowski
,
W.
,
2024
, “
Energy-Saving Technologies and Energy Efficiency in the Post-COVID Era
,”
Sust. Dev.
,
32
(
5
), pp.
5294
5310
.10.1002/sd.2978
2.
Bhagat
,
R. K.
,
Wykes
,
M. S. D.
,
Dalziel
,
S. B.
, and
Linden
,
P. F.
,
2020
, “
Effects of Ventilation on the Indoor Spread of COVID-19
,”
J. Fluid Mech.
,
903
, p.
F1
.10.1017/jfm.2020.720
3.
Wang
,
Y.
,
Zhai
,
C.
,
Zhao
,
T.
, and
Cao
,
Z.
,
2020
, “
Numerical Study on Pollutant Removal Performance of Vortex Ventilation With Different Pollution Source Locations
,”
Build. Simul.
,
13
(
6
), pp.
1373
1383
.10.1007/s12273-020-0632-3
4.
Barbosa
,
B. P. P.
, and
Brum
,
N. D. C. L.
,
2021
, “
Ventilation Mode Performance Against Airborne Respiratory Infections in Small Office Spaces: Limits and Rational Improvements for COVID-19
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
6
), p.
316
.10.1007/s40430-021-03029-x
5.
Ren
,
J.
,
Wang
,
Y.
,
Liu
,
Q.
, and
Liu
,
Y.
,
2021
, “
Numerical Study of Three Ventilation Strategies in a Prefabricated COVID-19 Inpatient Ward
,”
Build. Environ.
,
188
, p.
107467
.10.1016/j.buildenv.2020.107467
6.
Bennia
,
A.
,
Reffas
,
A.
,
Khan
,
M. A. H.
,
Mohamadi
,
H. E.
,
Lateb
,
M.
, and
Fellouah
,
H.
,
2023
, “
Experimental and Numerical Dynamic Investigation of a Swirling Jet: Application to Improve the Efficiency of Air Diffusion in an Occupied Zone
,”
J. Appl. Fluid Mech.
,
16
(
9
), pp.
1729
1741
.10.47176/jafm.16.09.1805
7.
Liu
,
X.
,
Li
,
T.
,
Wu
,
S.
, and
Zhang
,
J.
,
2023
, “
Effect of Personalized Ventilation in Seat Armrest on Diffusion Characteristics of Respiratory Pollutants in Train Carriages
,”
J. Appl. Fluid Mech.
,
16
(
12
), pp.
2518
2528
.10.47176/jafm.16.12.1953
8.
Gan
,
G.
,
2010
, “
Simulation of Buoyancy-Driven Natural Ventilation of Buildings—Impact of Computational Domain
,”
Energy Build.
,
42
(
8
), pp.
1290
1300
.10.1016/j.enbuild.2010.02.022
9.
Raji
,
A.
, and
Hasnaoui
,
M.
,
1998
, “
Mixed Convection Heat Transfer in a Rectangular Cavity Ventilated and Heated From the Side
,”
Numer. Heat Transfer, Part A
,
33
(
5
), pp.
533
548
.10.1080/10407789808913953
10.
Omri
,
A.
, and
Ben Nasrallah
,
S.
,
1999
, “
Control Volume Finite Element Numerical Simulation of Mixed Convection in an Air-Cooled Cavity
,”
Numer. Heat Transfer, Part A Appl.
,
36
(
6
), pp.
615
637
.10.1080/104077899274606
11.
Rahman
,
M. M.
,
Alim
,
M. A.
,
Saha
,
S.
, and
Chowdhury
,
M. K.
,
2009
, “
Effect of the Presence of a Heat-Conducting Horizontal Square Block on Mixed Convection Inside a Vented Square Cavity
,”
Nonlinear Anal. Modell. Control
,
14
(
4
), pp.
531
548
.10.15388/NA.2009.14.4.14472
12.
Mamun
,
M. A. H.
,
Rahman
,
M. M.
,
Billah
,
M. M.
, and
Saidur
,
R.
,
2010
, “
A Numerical Study on the Effect of a Heated Hollow Cylinder on Mixed Convection in a Ventilated Cavity
,”
Int. Commun. Heat Mass Transfer
,
37
(
9
), pp.
1326
1334
.10.1016/j.icheatmasstransfer.2010.07.019
13.
Moraga
,
N. O.
,
Sánchez
,
G. C.
, and
Riquelme
,
J. A.
,
2010
, “
Unsteady Mixed Convection in a Vented Enclosure Partially Filled With Two Non-Darcian Porous Layers
,”
Numer. Heat Transfer, Part A: Appl.
,
57
(
7
), pp.
473
495
.10.1080/10407781003659391
14.
Mehrizi
,
A. A.
,
Sedighi
,
K.
,
Afrouzi
,
H. H.
, and
Aghili
,
A. L.
,
2012
, “
Lattice Boltzmann Simulation of Forced Convection in Vented Cavity Filled by Porous Medium With Obstruction
,”
World Appl. Sci. J.
,
16
(Special Issue of Applied Math), pp.
31
36
.https://www.academia.edu/24382798/
15.
Hireche
,
Z.
,
Nasseri
,
L.
, and
Ameziani
,
D. E.
,
2020
, “
Heat Transfer Analysis of a Ventilated Room With a Porous Partition: LB-MRT Simulations
,”
Eur. Phys. J. Appl. Phys.
,
91
(
2
), p.
20904
.10.1051/epjap/2020200146
16.
Hireche
,
Z.
,
Himrane
,
N.
,
Nasseri
,
L.
,
Hamrioui
,
Y.
, and
Ameziani
,
D. E.
,
2022
, “
Analysis of Thermal Performances in a Ventilated Room Using LBM-MRT: Effect of a Porous Separation
,”
Comput. Sci.
,
10
(
1
), p.
4
.10.3390/computation10010004
17.
Hireche
,
Z.
,
Nasseri
,
L.
, and
Ameziani
,
D. E.
,
2020
, “
Study of Periodic Thermal Exchange in a Cavity Ventilated by Displacement
,”
Arab. J. Sci. Eng.
,
45
(
7
), pp.
5751
5768
.10.1007/s13369-020-04556-w
18.
Qingyan
,
C.
,
Van Der Kooi
,
J.
, and
Meyers
,
A.
,
1988
, “
Measurements and Computations of Ventilation Efficiency and Temperature Efficiency in a Ventilated Room
,”
Energy Build.
,
12
(
2
), pp.
85
99
.10.1016/0378-7788(88)90071-0
19.
Lage
,
J. L.
,
Bejan
,
A.
, and
Anderson
,
R.
,
1991
, “
Efficiency of Transient Contaminant Removal From a Slot Ventilated Enclosure
,”
Int. J. Heat Mass Transfer
,
34
(
10
), pp.
2603
2615
.10.1016/0017-9310(91)90100-S
20.
Lage
,
J. L.
,
Bejan
,
A.
, and
Anderson
,
R.
,
1992
, “
Removal of Contaminant Generated by a Discrete Source in a Slot Ventilated Enclosure
,”
Int. J. Heat Mass Transfer
,
35
(
5
), pp.
1169
1180
.10.1016/0017-9310(92)90177-T
21.
Deng
,
Q. H.
,
Zhou
,
J.
,
Mei
,
C.
, and
Shen
,
Y. M.
,
2004
, “
Fluid, Heat, and Contaminant Transport Structures of Laminar Double-Diffusive Mixed Convection in a Two-Dimensional Ventilated Enclosure
,”
Int. J. Heat Mass Transfer
,
47
(
24
), pp.
5257
5269
.10.1016/j.ijheatmasstransfer.2004.06.025
22.
Xamán
,
J.
,
Ortiz
,
A.
,
Álvarez
,
G.
, and
Chávez
,
Y.
,
2011
, “
Effect of a Contaminant Source (CO2) on the Air Quality in a Ventilated Room
,”
Energy
,
36
(
5
), pp.
3302
3318
.10.1016/j.energy.2011.03.026
23.
Serrano-Arellano
,
J.
,
Xamán
,
J.
, and
Álvarez
,
G.
,
2013
, “
Optimum Ventilation Based on the Ventilation Effectiveness for Temperature and CO2 Distribution in Ventilated Cavities
,”
Int. J. Heat Mass Transfer
,
62
, pp.
9
21
.10.1016/j.ijheatmasstransfer.2013.02.051
24.
Serrano-Arellano
,
J.
,
Gijón-Rivera
,
M.
,
Riesco-Ávila
,
J. M.
,
Xamán
,
J.
, and
Álvarez
,
G.
,
2014
, “
Numerical Investigation of Transient Heat and Mass Transfer by Natural Convection in a Ventilated Cavity: Outlet Air Gap Located Close to Heat Source
,”
Int. J. Heat Mass Transfer
,
76
, pp.
268
278
.10.1016/j.ijheatmasstransfer.2014.04.055
25.
Liu
,
Q.
, and
He
,
Y. L.
,
2018
, “
Multiple-Relaxation-Time Lattice Boltzmann Model for Simulating Double-Diffusive Convection in Fluid-Saturated Porous Media
,”
Int. J. Heat Mass Transfer
,
127
, pp.
497
502
.10.1016/j.ijheatmasstransfer.2017.12.155
26.
Cao
,
Z.
,
Wang
,
Y.
, and
Wang
,
M.
,
2018
, “
Comparison Between Vortex Flow and Bottom-Supply Flow on Contaminant Removal in a Ventilated Cavity
,”
Int. J. Heat Mass Transfer
,
118
, pp.
223
234
.10.1016/j.ijheatmasstransfer.2017.10.121
27.
Shi
,
Y. S.
,
Liu
,
D.
,
Wang
,
Y.
,
Zhao
,
F. Y.
, and
Li
,
Y. X.
,
2019
, “
Forced Flow Structure and Mixed Convection in a Ventilated Porous Enclosure With a Local Contaminant Source
,”
Int. J. Heat Mass Transfer
,
131
, pp.
973
983
.10.1016/j.ijheatmasstransfer.2018.09.096
28.
Younsi
,
Z.
,
Koufi
,
L.
, and
Naji
,
H.
,
2019
, “
Numerical Study of the Effects of Ventilated Cavities Outlet Location on Thermal Comfort and Air Quality
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
11
), pp.
4462
4483
.10.1108/HFF-09-2018-0518
29.
Ibrahim
,
S.
, and
Mehta
,
R. C.
,
2018
, “
An Investigation of Air Flow and Thermal Comfort of Modified Conventional Car Cabin Using Computerized Fluid Dynamics
,”
J. Appl. Fluid Mech.
,
11
(Special Issue), pp.
141
150
.10.36884/jafm.11.SI.29431
30.
Soni
,
B.
,
Mal
,
T. N.
, and
Nayak
,
A. K.
,
2024
, “
Effect of Bronchial Blood Flow on Respiratory Heat Exchange: A Mathematical Analysis for Infectious Diseases
,”
ASME J. Fluids Eng.
,
146
(
2
), pp.
1
10
.10.1115/1.4063260
31.
Shishodia
,
B. S.
,
Sanghi
,
S.
, and
Mahajan
,
P.
,
2017
, “
Numerical Investigation of Ventilation and Human Thermoregulation for Predicting Thermal Comfort of a Rider Wearing Ventilated Helmet
,”
ASME J. Fluids Eng.
,
139
(
6
), p.
061103
.10.1115/1.4036084
32.
Craven
,
B. A.
, and
Settles
,
G. S.
,
2006
, “
A Computational and Experimental Investigation of the Human Thermal Plume
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1251
1258
.10.1115/1.2353274
33.
Aryal
,
P.
, and
Leephakpreeda
,
T.
,
2016
, “
Effects of Partition on Thermal Comfort, Indoor Air Quality, Energy Consumption, and Perception in Air-Conditioned Buildings
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p.
051005
.10.1115/1.4034072
34.
Wang
,
J.
,
Xie
,
X.
,
Hu
,
X.
,
Wang
,
B.
,
Guo
,
P.
, and
Yu
,
T.
,
2025
, “
Research on Thermal Comfort of Human Body Under Localized Automotive Air Conditioning
,”
ASME J. Therm. Sci. Eng. Appl.
,
17
(
1
), p. 01
1002
.10.1115/1.4066736
35.
Saidi
,
M.
,
Sajadi
,
B.
, and
Molaeimanesh
,
G.
,
2011
, “
The Effect of Source Motion on Contaminant Distribution in Cleanrooms
,”
Energy Build.
,
43
(
4
), pp.
966
970
.10.1016/j.enbuild.2010.12.021
36.
Quenard
,
D. A.
,
Xu
,
K.
,
Künzel
,
H. M.
,
Bentz
,
D. P.
, and
Martys
,
N. S.
,
1998
, “
Microstructure and Transport Properties of Porous Building Materials
,”
Mater. Struct.
,
3
1(6), pp.
317
324
.10.1007/BF02480673
37.
Mohamad
,
A.
,
2011
,
Lattice Boltzmann Method
,
Springer
,
London, UK
.
38.
De Vahl Davis
,
G.
, and
Jones
,
I.
,
1983
, “
Natural Convection in a Square Cavity: A Comparison Exercise
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
227
248
.10.1002/fld.1650030304
39.
Le Quéré
,
P.
,
1991
, “
Accurate Solutions to the Square Thermally Driven Cavity at High Rayleigh Number
,”
Comput. Fluids
,
20
(
1
), pp.
29
41
.10.1016/0045-7930(91)90025-D
40.
Fusegi
,
T.
,
Hyun
,
J. M.
,
Kuwahara
,
K.
, and
Farouk
,
B.
,
1991
, “
A Numerical Study of Three-Dimensional Natural Convection in a Differentially Heated Cubical Enclosure
,”
Int. J. Heat Mass Transfer
,
34
(
6
), pp.
1543
1557
.10.1016/0017-9310(91)90295-P
41.
Krishna Satya Sai
,
B. V.
,
Seetharamu
,
K. N.
, and
Aswatha Narayana
,
P. A.
,
1994
, “
Solution of Transient Laminar Natural Convection in a Square Cavity by an Explicit Finite Element Scheme
,”
Numer. Heat Transf. Part A Appl.
,
25
(
5
), pp.
593
609
.10.1080/10407789408955968
42.
Leong
,
W. H.
,
Hollands
,
K. G. T.
, and
Brunger
,
A. P.
,
1999
, “
Experimental Nusselt Numbers for a Cubical-Cavity Benchmark Problem in Natural Convection
,”
Int. J. Heat Mass Transfer
,
42
(
11
), pp.
1979
1989
.10.1016/S0017-9310(98)00299-3
43.
Choukairy
,
K.
,
Bennacer
,
R.
, and
Vasseur
,
P.
,
2004
, “
Natural Convection in a Vertical Annulus Bordered by an Inner Wall of Finite Thickness
,”
Int. Commun. Heat Mass Transfer
,
31
(
4
), pp.
501
512
.10.1016/S0735-1933(04)00031-4
44.
Semma
,
E.
,
El Ganaoui
,
M.
,
Bennacer
,
R.
, and
Mohamad
,
A. A.
,
2008
, “
Investigation of Flows in Solidification Using the Lattice Boltzmann Method
,”
Int. J. Therm. Sci.
,
47
(
3
), pp.
201
208
.10.1016/j.ijthermalsci.2007.02.010
45.
Guo
,
Y.
,
Bennacer
,
R.
,
Shen
,
S.
,
Ameziani
,
D. E.
, and
Bouzidi
,
M.
,
2010
, “
Simulation of Mixed Convection in Slender Rectangular Cavity With Lattice Boltzmann Method
,”
Int. J. Numer. Methods Heat Fluid Flow
,
20
(
1
), pp.
130
148
.10.1108/09615531011008163
46.
Bahoosh
,
R.
,
Mohamadi
,
F.
, and
Karimi
,
M.
,
2015
, “
Numerical Investigation of Natural Convection in a Square Cavity With Tilting Walls
,”
J. Thermophys. Heat Transfer
,
29
(
4
), pp.
725
731
.10.2514/1.T4467
47.
Olayemi
,
O. A.
,
Khaled
,
A. F.
,
Temitope
,
O. J.
,
Victor
,
O. O.
,
Odetunde
,
C. B.
, and
Adegun
,
I. K.
,
2023
, “
Parametric Study of Natural Convection Heat Transfer From an Inclined Rectangular Cylinder Embedded in a Square Enclosure
,”
Aust. J. Mech. Eng.
,
21
(
2
), pp.
668
681
.10.1080/14484846.2021.1913853
48.
Beghein
,
C.
,
Haghighat
,
F.
, and
Allard
,
F.
,
1992
, “
Numerical Study of Double-Diffusive Natural Convection in a Square Cavity
,”
Int. J. Heat Mass Transfer
,
35
(
4
), pp.
833
846
.10.1016/0017-9310(92)90251-M
49.
Krüger
,
T.
,
Kusumaatmaja
,
H.
,
Kuzmin
,
A.
,
Shardt
,
O.
,
Silva
,
G.
, and
Viggen
,
E. M.
,
2017
,
Lattice Boltzmann Method
,
Springer International Publishing
,
Cham, Switzerland
.
You do not currently have access to this content.