Abstract

Advanced joining processes can be used to build-up complex parts from stock shapes, thereby reducing waste material. For high-cost metals, this can significantly reduce the manufacturing cost. Nevertheless, determining how to divide a complex part into subparts requires experience and currently takes hours for an engineer to evaluate alternative options. To tackle this issue, we present an artificial intelligence (AI) tree search to automatically decompose parts for advanced joining and generate minimum cost manufacturing plans. The AI makes use of a multi-fidelity optimization approach to balance exploration and exploitation. This approach is shown to provide good manufacturing feedback in less than 30 minutes and produce results that are competitive against experienced design engineers. Although the manufacturing plan models presented were developed specifically for linear and rotary friction welding, the primary algorithms are applicable to other advanced joining operations as well.

References

1.
Allen
,
J.
,
2006
, “
An Investigation Into the Comparative Costs of Additive Manufacture vs. Machine From Solid for Aero Engine Parts
,”
Cost Eff. Manuf. Net-Shape Process.
, Meeting proceedings RTO-MP-AVT-139, Neuilly-sur-Seine, RTO, France, pp.
17-1
17-10
.
2.
McAndrew
,
A. R.
,
Colegrove
,
P. A.
,
Bühr
,
C.
,
Flipo
,
B. C. D.
, and
Vairis
,
A.
,
2018
, “
A Literature Review of Ti-6Al-4V Linear Friction Welding
,”
Prog. Mater. Sci.
,
92
, pp.
225
257
. 10.1016/j.pmatsci.2017.10.003
3.
McAndrew
,
A. R.
, and
Flipo
,
B. C. D.
,
2018
, “
Linear Friction Welding for Near Net Shape Manufacturing of Titanium Alloy Ti-6Al-4V Aerospace Components
,”
Proceedings of 9th International Conference on Mechanical and Aerospace Engineering
, Budapest, Hungary, pp.
126
130
.
4.
Avinash
,
M.
,
Chaitanya
,
G. V. K.
,
Giri
,
D. K.
,
Upadhya
,
S.
, and
Muralidhara
,
B. K.
,
2007
, “
Microstructure and Mechanical Behaviour of Rotary Friction Welded Titanium Alloys
,”
Int. J. Mech. Aerospace, Ind. Mechatron. Manuf. Eng.
,
1
(
11
), pp.
641
643
.
5.
Flipo
,
B.
,
2014
, “
Near-Net-Shape Manufacturing by Linear Friction Welding Near Net Shape Manufacturing by LFW
,”
Titanium Europe
,
Sorrento, Italy
.
6.
Flipo
,
B.
,
Beamish
,
K.
,
Humphreys
,
B.
,
Wood
,
M.
, and
Shilton
,
A.
,
2007
, “
Linear Friction Welding of Ti 6Al 4V for Aerostructure Applications
,”
Trends in Welding Research
,
Tokyo, Japan
, pp.
14
21
.
7.
Cai
,
W.
,
Daehn
,
G.
,
Vivek
,
A.
,
Li
,
J.
,
Khan
,
H.
,
Mishra
,
R. S.
, and
Komarasamy
,
M.
,
2019
, “
A State-of-the-Art Review on Solid-State Metal Joining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031012
. 10.1115/1.4041182
8.
Masood
,
S. H.
, and
Rattanawong
,
W.
,
2002
, “
A Generic Part Orientation System Based on Volumetric Error in Rapid Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
19
(
3
), pp.
209
216
. 10.1007/s001700200015
9.
Byun
,
H. S.
, and
Lee
,
K. H.
,
2006
, “
Determination of Optimal Build Direction in Rapid Prototyping With Variable Slicing
,”
Int. J. Adv. Manuf. Technol.
,
28
(
3–4
), pp.
307
313
. 10.1007/s00170-004-2355-5
10.
Hildebrand
,
K.
,
Bickel
,
B.
, and
Alexa
,
M.
,
2013
, “
Orthogonal Slicing for Additive Manufacturing
,”
Comput. Graph.
,
37
(
6
), pp.
669
675
. 10.1016/j.cag.2013.05.011
11.
Luo
,
N.
, and
Wang
,
Q.
,
2016
, “
Fast Slicing Orientation Determining and Optimizing Algorithm for Least Volumetric Error in Rapid Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
83
(
5–8
), pp.
1297
1313
. 10.1007/s00170-015-7571-7
12.
Luo
,
L.
,
Baran
,
I.
,
Rusinkiewicz
,
S.
, and
Matusik
,
W.
,
2012
, “
Chopper: Partitioning Models Into 3D-Printable Parts
,”
ACM Trans. Graph.
,
31
(
6
), pp.
1
9
.
13.
Das
,
P.
,
Chandran
,
R.
,
Samant
,
R.
, and
Anand
,
S.
,
2015
, “
Optimum Part Build Orientation in Additive Manufacturing for Minimizing Part Errors and Support Structures
,”
Proc. Manuf.
,
1
, pp.
343
354
. 10.1016/j.promfg.2015.09.041
14.
Li
,
Y.
, and
Zhang
,
J.
,
2013
, “
Multi-Criteria GA-Based Pareto Optimization of Building Direction for Rapid Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1819
1831
. 10.1007/s00170-013-5147-y
15.
Canellidis
,
V.
,
Giannatsis
,
J.
, and
Dedoussis
,
V.
,
2009
, “
Genetic-Algorithm-Based Multi-Objective Optimization of the Build Orientation in Stereolithography
,”
Int. J. Adv. Manuf. Technol.
,
45
(
7–8
), pp.
714
730
. 10.1007/s00170-009-2006-y
16.
Vanek
,
J.
,
Galicia
,
J. A. G.
,
Benes
,
B.
,
Měch
,
R.
,
Carr
,
N.
,
Stava
,
O.
, and
Miller
,
G. S.
,
2014
, “
PackMerger: A 3D Print Volume Optimizer
,”
Comput. Graph. Forum
,
33
(
6
), pp.
322
332
. 10.1111/cgf.12353
17.
Chen
,
X.
,
Zhang
,
H.
,
Lin
,
J.
,
Hu
,
R.
,
Lu
,
L.
,
Huang
,
Q.
,
Benes
,
B.
,
Cohen-Or
,
D.
, and
Chen
,
B.
,
2015
, “
Dapper: Decompose-and-Pack for 3D Printing
,”
ACM Trans. Graph.
,
34
(
6
).
18.
March
,
A.
, and
Willcox
,
K.
,
2012
, “
Provably Convergent Multifidelity Optimization Algorithm not Requiring High-Fidelity Derivatives
,”
AIAA J.
,
50
(
5
), pp.
1079
1089
. 10.2514/1.J051125
19.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modelling
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
463
(
2088
), pp.
3251
3269
. 10.1098/rspa.2007.1900
20.
Oliver
,
M. A.
, and
Webster
,
R.
,
1990
, “
Kriging: A Method of Interpolation for Geographical Information Systems
,”
Int. J. Geogr. Inf. Syst.
,
4
(
3
), pp.
312
332
.
21.
Massoni
,
B.
, and
Campbell
,
M. I.
,
2018
, “
Optimizing Cutting Planes for Advanced Joining and Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031001
. 10.1115/1.4038509
22.
Massoni
,
B.
, and
Campbell
,
M. I.
,
2017
, “
A Decomposition Based Method for Efficient Manufacturing of Complex Parts
,”
Comput. Aided. Des. Appl.
,
14
(
6
), pp.
705
719
. 10.1080/16864360.2017.1287673
23.
Dennis
,
J. E.
, and
Woods
,
D. J.
,
1987
, “
Optimization on Microcomputers: The Nelder-Mead Simplex Algorithm
,”
New Computing Environments: Microcomputers in Large-Scale Computing
,
Society for Industrial and Applied Mathematics, Philadelphia, PA
, pp.
116
122
.
24.
Mitchell
,
M.
,
1996
,
An Introduction to Genetic Algorithms
,
MIT Press
,
Cambridge, MA
.
25.
Chan
,
R.
,
Campbell
,
M. I.
, and
Haapala
,
K. R.
,
2018
, “
Automated Rapid Manufacturing Feedback for Design Considering Advanced Joining Processes
,”
M.S. Thesis
,
School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University
.
26.
Maalekian
,
M.
,
2007
, “
Friction Welding—Critical Assessment of Literature
,”
Sci. Technol. Weld. Join.
,
12
(
8
), pp.
738
759
. 10.1179/174329307X249333
27.
The Welding Institute
,
2019
, “
What Accuracy, on Overall Length, Can be Achieved With Friction Welding?
28.
Vijayakumar
,
A. K.
,
Cogswell
,
M.
,
Selvaraju
,
R. R.
,
Sun
,
Q.
,
Lee
,
S.
,
Crandall
,
D.
, and
Batra
,
D.
,
2016
, “
Diverse Beam Search: Decoding Diverse Solutions From Neural Sequence Models
,” , pp.
1
16
.
29.
Nelaturi
,
S.
,
Burton
,
G.
,
Fritz
,
C.
, and
Kurtoglu
,
T.
,
2015
, “
Automatic Spatial Planning for Machining Operations
,”
IEEE International Conference on Automation Science and Engineering
,
Gothenburg, Sweden
, pp.
677
682
.
30.
Kanal
,
L.
, and
Kumar
,
V.
,
1988
,
Search in Artificial Intelligence
,
Springer Publishing Company
,
New York
.
31.
Scherillo
,
F.
,
Astarita
,
A.
,
Carrino
,
L.
,
Pirozzi
,
C.
,
Prisco
,
U.
, and
Squillace
,
A.
,
2019
, “
Linear Friction Welding of Ti-6Al-4V Parts Produced by Electron Beam Melting
,”
Mater. Manuf. Process.
,
34
(
2
), pp.
201
207
. 10.1080/10426914.2018.1532086
32.
Bühr
,
C.
,
Ahmad
,
B.
,
Colegrove
,
P. A.
,
McAndrew
,
A. R.
,
Guo
,
H.
, and
Zhang
,
X.
,
2018
, “
Prediction of Residual Stress Within Linear Friction Welds Using a Computationally Efficient Modelling Approach
,”
Mater. Des.
,
139
, pp.
222
233
. 10.1016/j.matdes.2017.11.013
You do not currently have access to this content.