Abstract

FeCoNiCrAl0.5 high-entropy alloy (HEA) specimens were prepared by laser powder bed fusion (L-PBF) under different laser process parameters, and their physical phases, microstructures, and defects were investigated. Micro-grinding experiments were designed to explore the effects of varying laser parameters on the micro-grinding performance of L-PBF-HEAs by analyzing the micro-grinding force and roughness and observing the surface morphology. The experimental results show that the internal defects of L-PBF-HEA FeCoNiCrAl0.5 decrease as the laser power increases, and increase when the laser scanning spacing and scanning speed increase. When the laser power is increased, the micro-grinding force shows a growing trend, the Ra decreases and then increases, and the surface morphology flatness improves; when the laser scanning spacing increases, the micro-grinding force decreases, the Ra increases, and the surface morphology deteriorates; when the laser scanning speed increases, the micro-grinding force increases and then decreases, and the Ra decreases and then increases, and the surface morphology improves relatively.

References

1.
Chen
,
W.
,
Hilhorst
,
A.
,
Bokas
,
G.
,
Gorsse
,
S.
,
Jacques
,
P.
, and
Hautier
,
G.
,
2023
, “
A Map of Single-Phase High-Entropy Alloys
,”
Nat. Commun.
,
14
(
1
), p.
2856
.
2.
Khorasani
,
M.
,
Ghasemi
,
A.
,
Rolfe
,
B.
, and
Gibson
,
I.
,
2022
, “
Additive Manufacturing a Powerful Tool for the Aerospace Industry
,”
Rapid Prototyp. J.
,
28
(
1
), pp.
87
100
.
3.
Wang
,
B.
,
Wang
,
C.
,
Yu
,
X. W.
,
Cao
,
Y.
,
Cao
,
L. F.
,
Wu
,
C. P.
,
Yao
,
Y. F.
,
Lin
,
Z. Q.
, and
Zou
,
Z. G.
,
2022
, “
General Synthesis of High-Entropy Alloy and Ceramic Nanoparticles in Nanoseconds
,”
Nat. Synth.
,
1
(
2
), pp.
138
146
.
4.
Zhang
,
Q.
,
Zhang
,
S. S.
,
Luo
,
Y.
,
Liu
,
Q.
,
Luo
,
J.
,
Chu
,
P. K.
, and
Liu
,
X. J.
,
2022
, “
Preparation of High Entropy Alloys and Application to Catalytical Water Electrolysis
,”
Appl. Mater.
,
10
(
7
), p.
70701
.
5.
Gelchinski
,
B. R.
,
Balyakin
,
I. A.
,
Yuryev
,
A. A.
, and
Rempel
,
A. A.
,
2022
, “
High-Entropy Alloys: Properties and Prospects of Application as Protective Coatings
,”
Russ. Chem. Rev.
,
91
(
6
), p.
RCR5023
.
6.
Yeganeh
,
M.
,
Shahryari
,
Z.
,
Khanjar
,
A. T.
,
Hajizadeh
,
Z.
, and
Shabani
,
F.
,
2023
, “
Inclusions and Segregations in the Selective Laser-Melted Alloys: A Review
,”
Coatings
,
13
(
7
), p.
1295
.
7.
Sokkalingam
,
R.
,
Chao
,
Z.
,
Sivaprasad
,
K.
,
Muthupandi
,
V.
,
Jayaraj
,
J.
,
Ramasamy
,
P.
,
Eckert
,
J.
, and
Prashanth
,
K. G.
,
2023
, “
Additive Manufacturing of CoCrFeMnNi High-Entropy Alloy/AISI 316L Stainless Steel Bimetallic Structures
,”
Adv. Eng. Mater.
,
25
(
7
), p.
2200341
.
8.
Raeymaekers
,
B.
, and
Berfield
,
T.
,
2025
, “
Characterizing the As-Built Surface Topography of Inconel 718 Specimens as a Function of Laser Powder Bed Fusion Process Parameters
,”
Rapid Prototyp. J.
,
31
(
1
), pp.
200–
217
.
9.
Whip
,
B.
,
Sheridan
,
L.
, and
Gockel
,
J.
,
2019
, “
The Effect of Primary Processing Parameters on Surface Roughness in Laser Powder Bed Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
103
(
9
), pp.
4411
4422
.
10.
Yan
,
Y.
,
Song
,
W. D.
,
Li
,
K. F.
,
Zhao
,
K.
,
Sun
,
T. T.
,
Song
,
K. K.
,
Gong
,
J. H.
, and
Hu
,
L. N.
,
2022
, “
Microstructural Features and Mechanical Behaviors of Al0.5Cr0.8CoFeNi2.5V0.2 High-Entropy Alloys Fabricated by Selective Laser Melting Technique
,”
Acta Metall. Sinica-Engl.
,
35
(
10
), pp.
1591
1606
.
11.
Chen
,
Y. N.
, and
Li
,
B.
,
2023
, “
Double-Phase Refractory Medium Entropy Alloy NbMoTi Via Selective Laser Melting (SLM) Additive Manufacturing
,”
J. Phys. Conf. Ser.
,
2419
(
1
), p.
12074
.
12.
Pan
,
X. Y.
, and
Qiu
,
C. L.
,
2022
, “
Promoting Columnar-to-Equiaxed Transition in AlCoCrFeNi High Entropy Alloy During Selective Laser Melting by Adding Cr3C2
,”
Mater. Res. Lett.
,
10
(
12
), pp.
788
796
.
13.
Campari
,
E. G.
, and
Casagrande
,
A.
,
2022
, “
Microstructural Study of CrNiCoFeMn High Entropy Alloy Obtained by Selective Laser Melting
,”
Materials
,
15
(
16
), p.
5544
.
14.
Guo
,
Y. N.
,
Su
,
H. L.
,
Yang
,
P. X.
,
Zhao
,
Y.
,
Shen
,
Z. L.
,
Liu
,
Y.
,
Zhao
,
D.
, et al
,
2022
, “
A Review of Emerging Metallic System for High-Energy Beam Additive Manufacturing: Al–Co–Cr–Fe–Ni High Entropy Alloys
,”
Acta Metall. Sinica-Engl.
,
35
(
9
), pp.
1407
1423
.
15.
Wu
,
J. W.
,
Guo
,
Y. X.
,
Wang
,
F. P.
,
Shang
,
X. J.
,
Zhang
,
J.
, and
Liu
,
Q. B.
,
2023
, “
Laser Additively Manufactured Crack-Free Aluminum-Bearing High Entropy Alloys: Alloy Design, Synthesis, Cracking Inhibition and Microstructure Evolution Effects on Their Tensile Properties
,”
Virtual Phys. Prototyp.
,
18
(
1
), p.
e2250771
.
16.
Wei
,
S. M.
,
Ma
,
P.
,
Fang
,
Y. C.
,
Zhang
,
Z. Y.
,
Yang
,
Z. L.
,
Shi
,
X. Y.
, and
Prashanth
,
K. G.
,
2022
, “
Crack Formation and Control in an AlCoCrFeNi High Entropy Alloy Fabricated by Selective Laser Melting
,”
3D Print. Addit. Manuf.
,
11
(
2
), pp.
e628
e637
.
17.
Ren
,
Y. H.
,
Li
,
C. F.
,
Li
,
W.
,
Li
,
M. J.
, and
Liu
,
H.
,
2019
, “
Study on Micro-Grinding Quality in Micro-Grinding Tool for Single Crystal Silicon
,”
J. Manuf. Processes
,
42
(
6
), pp.
246
256
.
18.
Gu
,
P. F.
,
Qi
,
T. B.
,
Chen
,
L.
,
Ge
,
T.
, and
Ren
,
X. D.
,
2022
, “
Manufacturing and Analysis of VNbMoTaW Refractory High-Entropy Alloy Fabricated by Selective Laser Melting
,”
Int. J. Refract. Met. Hard Mater.
,
105
(
6
), p.
105834
.
19.
Liu
,
T.
,
Wang
,
Q. Q.
,
Cai
,
X. Y.
,
Pan
,
L.
,
Li
,
J. S.
,
Zong
,
Z.
,
Cheng
,
Z. H.
,
Tian
,
Z. J.
,
Luo
,
L. S.
, and
Su
,
Y. Q.
,
2022
, “
Effect of Laser Power on Microstructures and Properties of Al4.82Mg0.75Sc0.49Mn0.28Zr Alloy Fabricated by Selective Laser Melting
,”
J. Mater. Res. Technol.
,
18
(
1
), pp.
3612
3625
.
You do not currently have access to this content.