Abstract

Combining metallic additive manufacturing with laser texturing could be an alternative in obtaining parts with functional hydrophilic surfaces, which improves osteointegration. Careful study of the corrosion behavior of the surfaces obtained is necessary, because the evolution of this phenomenon can influence the osteointegration of the implant, causing the release of metal ions in the body and even the rejection of the component. This study compared the corrosion behavior of laser texturing Ti6Al4V components with components manufactured using laser power bed fusion of the same alloy followed by laser texturing. Their microstructure, roughness, wettability, and electrochemical behavior were analyzed, and different morphologies and microtopographies were observed comparing both samples. The electrochemical tests obtained indicate that Ti6Al4V showed higher corrosion resistance than L-PBF Ti6Al4V after laser texturing. The results suggest that laser texturing can encourage cell proliferation and osseointegration on the surface of Ti6Al4V biomedical implants.

References

1.
Wong
K. C.
and
Scheinemann
P.
, “
Additive Manufactured Metallic Implants for Orthopaedic Applications
,”
Science China Materials
61
, no. 
4
(April
2018
):
440
454
, https://doi.org/10.1007/s40843-017-9243-9
2.
García-León
R. A.
,
Gómez-Camperos
J. A.
, and
Jaramillo
H. Y.
, “
Scientometric Review of Trends on the Mechanical Properties of Additive Manufacturing and 3D Printing
,”
Journal of Materials Engineering and Performance
30
, no. 
7
(July
2021
):
4724
4734
, https://doi.org/10.1007/s11665-021-05524-7
3.
Arabnejad
S.
,
Burnett Johnston
R.
,
Pura
J. A.
,
Singh
B.
,
Tanzer
M.
, and
Pasini
D.
, “
High-Strength Porous Biomaterials for Bone Replacement: A Strategy to Assess the Interplay between Cell Morphology, Mechanical Properties, Bone Ingrowth and Manufacturing Constraints
,”
Acta Biomaterialia
30
(January
2016
):
345
356
, https://doi.org/10.1016/j.actbio.2015.10.048
4.
Oh
S.
,
Daraio
C.
,
Chen
L.-H.
,
Pisanic
T. R.
,
Fiñones
R. R.
, and
Jin
S.
, “
Significantly Accelerated Osteoblast Cell Growth on Aligned TiO2 Nanotubes
,”
Journal of Biomedical Materials Research. Part A
78A
, no. 
1
(July
2006
):
97
103
, https://doi.org/10.1002/jbm.a.30722
5.
Ahuir-Torres
J. I.
,
Arenas
M. A.
,
Perrie
W.
,
Dearden
G.
, and
de Damborenea
J.
, “
Surface Texturing of Aluminium Alloy AA2024-T3 by Picosecond Laser: Effect on Wettability and Corrosion Properties
,”
Surface and Coatings Technology
321
(
2017
):
279
291
, https://doi.org/10.1016/j.surfcoat.2017.04.056
6.
Cai
Y.
,
Chang
W.
,
Luo
X.
,
Sousa
A. M. L.
,
Lau
K. H. A.
, and
Qin
Y.
, “
Superhydrophobic Structures on 316L Stainless Steel Surfaces Machined by Nanosecond Pulsed Laser
,”
Precision Engineering
52
(
2018
):
266
275
, https://doi.org/10.1016/j.precisioneng.2018.01.004
7.
Dashtbozorg
B.
,
Li
X.
,
Romano
J.-M.
,
Garcia-Giron
A.
,
Sammons
R. L.
,
Dimov
S.
, and
Dong
H.
, “
A Study on the Effect of Ultrashort Pulsed Laser Texturing on the Microstructure and Properties of Metastable S Phase Layer Formed on AISI 316L Surfaces
,”
Applied Surface Science
511
(
2020
): 145557, https://doi.org/10.1016/j.apsusc.2020.145557
8.
He
A.
,
Liu
W.
,
Xue
W.
,
Yang
H.
, and
Cao
Y.
, “
Nanosecond Laser Ablated Copper Superhydrophobic Surface with Tunable Ultrahigh Adhesion and Its Renewability with Low Temperature Annealing
,”
Applied Surface Science
434
(
2018
):
120
125
, https://doi.org/10.1016/j.apsusc.2017.10.143
9.
Vilhena
L. M.
,
Sedlaček
M.
,
Podgornik
B.
,
Vižintin
J.
,
Babnik
A.
, and
Možina
J.
, “
Surface Texturing by Pulsed Nd:YAG Laser
,”
Tribology International
42
, no. 
10
(October
2009
):
1496
1504
, https://doi.org/10.1016/j.triboint.2009.06.003
10.
Zupančič
M.
,
Može
M.
,
Gregorčič
P.
, and
Golobič
I.
, “
Nanosecond Laser Texturing of Uniformly and Non-uniformly Wettable Micro Structured Metal Surfaces for Enhanced Boiling Heat Transfer
,”
Applied Surface Science
399
(
2017
):
480
490
, https://doi.org/10.1016/j.apsusc.2016.12.120
11.
Boinovich
L.
and
Emelyanenko
A.
, “
A Wetting Experiment as a Tool to Study the Physicochemical Processes Accompanying the Contact of Hydrophobic and Superhydrophobic Materials with Aqueous Media
,”
Advances in Colloid and Interface Science
179-182
(
2012
):
133
141
, https://doi.org/10.1016/j.cis.2012.06.010
12.
Chun
D.-M.
,
Ngo
C.-V.
, and
Lee
K.-M.
, “
Fast Fabrication of Superhydrophobic Metallic Surface Using Nanosecond Laser Texturing and Low-Temperature Annealing
,”
CIRP Annals
65
, no. 
1
(
2016
):
519
522
, https://doi.org/10.1016/j.cirp.2016.04.019
13.
Ta
D.
,
Dunn
A.
,
Wasley
T. J.
,
Kay
R. W.
,
Stringer
J.
,
Smith
P. J.
,
Connaughton
C.
, and
Shephard
J. D.
, “
Nanosecond Laser Txtured Superhydrophobic Metallic Surfaces and Their Chemical Sensing Applications
,”
Applied Surface Science
357
, Part A (December
2015
):
248
254
, https://doi.org/10.1016/j.apsusc.2015.09.027
14.
Trdan
U.
,
Hočevar
M.
, and
Gregorčič
P.
, “
Transition from Superhydrophilic to Superhydrophobic State of Laser Textured Stainless Steel Surface and Its Effect on Corrosion Resistance
,”
Corrosion Science
123
(
2017
):
21
26
, https://doi.org/10.1016/j.corsci.2017.04.005
15.
Cai
Y.
,
Luo
X.
,
Maclean
M.
,
Qin
Y.
,
Duxbury
M.
, and
Ding
F.
, “
A Single-Step Fabrication Approach for Development of Antimicrobial Surfaces
,”
Journal of Materials Processing Technology
271
(
2019
):
249
260
, https://doi.org/10.1016/j.jmatprotec.2019.04.012
16.
Elias
C. N.
,
Oshida
Y.
,
Lima
J. H. C.
, and
Muller
C. A.
, “
Relationship between Surface Properties (Roughness, Wettability and Morphology) of Titanium and Dental Implant Removal Torque
,”
Journal of the Mechanical Behavior of Biomedical Materials
1
, no. 
3
(July
2008
):
234
242
, https://doi.org/10.1016/j.jmbbm.2007.12.002
17.
Cunha
A.
,
Elie
A.-M.
,
Plawinski
L.
,
Serro
A. P.
,
Botelho do Rego
A. M.
,
Almeida
A.
,
Urdaci
M. C.
,
Durrieu
M.-C.
, and
Vilar
R.
, “
Femtosecond Laser Surface Texturing of Titanium as a Method to Reduce the Adhesion of Staphylococcus aureus and Biofilm Formation
,”
Applied Surface Science
360
, Part B (January
2016
):
485
493
, https://doi.org/10.1016/j.apsusc.2015.10.102
18.
Čapek
J.
,
Machová
M.
,
Fousová
M.
,
Kubásek
J.
,
Vojtěch
D.
,
Fojt
J.
,
Jablonská
E.
,
Lipov
J.
, and
Ruml
T.
, “
Highly Porous, Low Elastic Modulus 316L Stainless Steel Scaffold Prepared by Selective Laser Melting
,”
Materials Science and Engineering: C
69
(
2016
):
631
639
, https://doi.org/10.1016/j.msec.2016.07.027
19.
Cohen
D. J.
,
Cheng
A.
,
Sahingur
K.
,
Clohessy
R. M.
,
Hopkins
L. B.
,
Boyan
B. D.
, and
Schwartz
Z.
, “
Performance of Laser Sintered Ti-6Al-4V Implants with Bone-Inspired Porosity and Micro/nanoscale Surface Roughness in the Rabbit Femur
,”
Biomedical Materials
12
, no. 
2
(April
2017
): 025021, https://doi.org/10.1088/1748-605X/aa6810
20.
Liang
H.
,
Yang
Y.
,
Xie
D.
,
Li
L.
,
Mao
N.
,
Wang
C.
,
Tian
Z.
,
Jiang
Q.
, and
Shen
L.
, “
Trabecular-Like Ti-6Al-4V Scaffolds for Orthopedic: Fabrication by Selective Laser Melting and In Vitro Biocompatibility
,”
Journal of Materials Science and Technology
35
, no. 
7
(July
2019
):
1284
1297
, https://doi.org/10.1016/j.jmst.2019.01.012
21.
Levine
B. R.
,
Sporer
S.
,
Poggie
R. A.
,
Della Valle
C. J.
, and
Jacobs
J. J.
, “
Experimental and Clinical Performance of Porous Tantalum in Orthopedic Surgery
,”
Biomaterials
27
, no. 
27
(September
2006
):
4671
4681
, https://doi.org/10.1016/j.biomaterials.2006.04.041
22.
Lodhi
M. J. K.
,
Deen
K. M.
,
Greenlee-Wacker
M. C.
, and
Haider
W.
, “
Additively Manufactured 316L Stainless Steel with Improved Corrosion Resistance and Biological Response for Biomedical Applications
,”
Additive Manufacturing
27
(
2019
):
8
19
, https://doi.org/10.1016/j.addma.2019.02.005
23.
Wenzel
R. N.
, “
Resistance of Solid Surfaces to Wetting by Water
,”
Industrial & Engineering Chemistry
28
, no. 
8
(August
1936
):
988
994
, https://doi.org/10.1021/ie50320a024
24.
Yan
H.
,
Abdul Rashid
M. R. B.
,
Khew
S. Y.
,
Li
F.
, and
Hong
M.
, “
Wettability Transition of Laser Textured Brass Surfaces inside Different Mediums
,”
Applied Surface Science
427
, Part B (January
2018
):
369
375
, https://doi.org/10.1016/j.apsusc.2017.08.218
25.
Kietzig
A. M.
,
Hatzikiriakos
S. G.
, and
Englezos
P.
, “
Patterned Superhydrophobic Metallic Surfaces
,”
Langmuir
25
, no. 
8
(April
2009
):
4821
4827
, https://doi.org/10.1021/la8037582
26.
dos Santos
R. G.
, “
Influência de parâmetros do laser pulsado de itérbio na modificação de superfícies da liga Ti-6Al-4V
” (masters thesis,
Universidade de São Paulo
,
2022
).
27.
GF Machining Solution “
Laser Process: C7 Tecnologia de Funcionamento
,” Technical Manual,
2017
.
28.
Coathup
M. J.
,
Blunn
G. W.
,
Mirhosseini
N.
,
Erskine
K.
,
Liu
Z.
,
Garrod
D. R.
, and
Li
L.
, “
Controlled Laser Texturing of Titanium Results in Reliable Osteointegration
,”
Journal of Orthopaedic Research
35
, no. 
4
(April
2017
):
820
828
, https://doi.org/10.1002/jor.23340
29.
Pan
J.
,
Karlén
C.
, and
Ulfvin
C.
, “
Electrochemical Study of Resistance to Localized Corrosion of Stainless Steels for Biomaterial Applications
,”
Journal of The Electrochemical Society
147
, no. 
3
(February
2000
): 1021, https://doi.org/10.1149/1.1393307
30.
Berbel
L. O.
, “
Avaliação da resistência à corrosão da liga Ti-6Al-4V para implantes dentários em ambientes aerados e deaerados
” (PhD diss.,
Universidade de São Paulo
,
2021
).
31.
Tolochko
N. K.
,
Mozzharov
S. E.
,
Yadroitsev
I. A.
,
Laoui
T.
,
Froyen
L.
,
Titov
V. I.
, and
Ignatiev
M. B.
, “
Balling Processes during Selective Laser Treatment of Powders
,”
Rapid Prototyping Journal
10
, no. 
2
(
2004
):
78
87
, https://doi.org/10.1108/13552540410526953
32.
de Lima
M. S. F.
and
Almeida
I.
, “
Surface Modification of Ti6Al4V Alloy by Pulsed Lasers: Microstructure and Hydrophobic Behavior
,”
Materials Research
20
, no. 
1
(
2017
):
8
14
, https://doi.org/10.1590/1980-5373-mr-2017-0221
33.
Ibrahim
M. K.
,
Hamzah
E.
, and
Saud
S. N.
, “
Microstructure, Phase Transformation, Mechanical Behavior, Bio-corrosion and Antibacterial Properties of Ti-Nb-xSn (x = 0, 0.25, 0.5 and 1.5) SMAs
,”
Journal of Materials Engineering and Performance
28
, no. 
1
(January
2019
):
382
393
, https://doi.org/10.1007/s11665-018-3776-x
34.
Le
P. T. M.
,
Shintani
S. A.
,
Takadama
H.
,
Ito
M.
,
Kakutani
T.
,
Kitagaki
H.
,
Terauchi
S.
, et al., “
Bioactivation Treatment with Mixed Acid and Heat on Titanium Implants Fabricated by Selective Laser Melting Enhances Preosteoblast Cell Differentiation
,”
Nanomaterials
11
, no. 
4
(April
2021
): 987, https://doi.org/10.3390/nano11040987
35.
Hamza
H. M.
,
Deen
K. M.
, and
Haider
W.
, “
Microstructural Examination and Corrosion Behavior of Selective Laser Melted and Conventionally Manufactured Ti6Al4V for Dental Applications
,”
Materials Science and Engineering: C
113
(
2020
): 110980, https://doi.org/10.1016/j.msec.2020.110980
36.
Wu
C.
,
Chen
M.
,
Zheng
T.
, and
Yang
X.
, “
Effect of Surface Roughness on the Initial Response of MC3T3-E1 Cells Cultured on Polished Titanium Alloy
,”
Bio-medical Materials and Engineering
26
, no. 
s1
(
2015
):
S155
S164
, https://doi.org/10.3233/BME-151301
37.
Kravchenko
Y. O.
,
Garkusha
I. E.
,
Taran
A. V.
,
Coy
E.
,
Iatsunskyi
I.
,
Diedkova
K.
,
Roshchupkin
A.
, et al., “
Development of Hydrophilic NbCuSi(N) &TiAlNb(N) Coatings as a New Strategy for Medical Implants Modification
,”
Ceramics International
49
, no. 
3
(February
2023
):
4099
4108
, https://doi.org/10.1016/j.ceramint.2022.09.290
38.
Aufa
A. N.
,
Hassan
M. Z.
,
Ismail
Z.
,
Harun
N.
,
Ren
J.
, and
Sadali
M. F.
, “
Surface Enhancement of Ti–6Al–4V Fabricated by Selective Laser Melting on Bone-Like Apatite Formation
,”
Journal of Materials Research and Technology
19
(
2022
):
4018
4030
, https://doi.org/10.1016/j.jmrt.2022.06.135
39.
Şahin
M.
,
Ünalan
F.
, and
Mutlu
I.
, “
Corrosion, Ion Release, and Surface Hardness of Ti-6Al-4V and Cobalt-Chromium Alloys Produced by CAD-CAM Milling and Laser Sintering
,”
128
, no. 
3
(September): 529.e1–529.e10, https://doi.org/10.1016/j.prosdent.2022.06.011
40.
Cui
Y. W.
,
Chen
L.-Y.
,
Qin
P.
,
Li
R.
,
Zang
Q.
,
Peng
J.
,
Zhang
L.
,
Lu
S.
,
Wang
L.
, and
Zhang
L.-C.
, “
Metastable Pitting Corrosion Behavior of Laser Powder Bed Fusion Produced Ti-6Al-4V in Hank’s Solution
,”
Corrosion Science
203
(
2022
): 110333, https://doi.org/10.1016/j.corsci.2022.110333
41.
Ramos de Oliveira
R.
,
Xavier
G.
,
Castro
R. S.
,
Porto
J. B.
,
Santos
L. U
,
,
Terada
M.
, and
Couto
A. A.
, “
Identificação e quantificação de fases de Ti6Al4V produzido por fusão em leito de pó a laser
,” in
24 Congresso Brasileiro de Engenharia e Ciência dos Materiais
(Águas de Lindóia, Brazil: Instituto de Pesquisas Energéticas e Nucleares,
2022
).
This content is only available via PDF.
You do not currently have access to this content.