Unpredicted sheet forming failures of dual-phase (DP) steels can occur in regions of high curvature and with little apparent necking. Such failures are often referred to as “shear fractures”. In order to reproduce such fractures in a laboratory setting, and to understand their origin and the inability to predict them, a novel draw-bend formability (DBF) test was devised using dual displacement rate control. DP steels from several suppliers, with tensile strengths ranging from 590 to 980 MPa, were tested over a range of rates and bend ratios (R/t) along with a TRIP (transformation induced plasticity) steel for comparison. The new test reliably reproduced three kinds of failures identified as types 1, 2, and 3, corresponding to tensile failure, transitional failure, and shear fracture, respectively. The type of failure depends on R/t and strain rate, and presumably on the initial specimen width, which was constant in this study. Two critical factors influencing the lack of accurate failure prediction were identified. The dominant one is deformation-induced heating, which is particularly significant for advanced high strength steels because of their high energy product. Temperature rises of up to 100 deg. C were observed. This factor reduces formability at higher strain rates, and promotes a transition from types 1 to 3. The second factor is related to microstructural features. It was significant in only one material in one test direction (of 11 tested) and only for this case was the local fracture strain different from that in a tensile failure. Alternate measures for assessing draw-bend formability were introduced and compared. They can be used to rank the formability of competing materials and to detect processing problems that lead to unsuitable microstructures.

References

1.
Demeri
,
M. Y.
,
2006
, “
Forming of Advanced High Strength Steels
,”
ASM Handbook
, Vol.
14B
, Metalworking: Sheet Forming,
S. L.
Semiatin
, ed., ASM International,
Materials Park, OH
.
2.
Horvath
,
C. D.
, and
Fekete
,
J. R.
,
2004
, “
Opportunities and Challenges for Increased Usage of Advanced High Strength Steels in Automotive Applications
,”
International Conference on Advanced High Strength Steels for Automotive Applications Proceedings, Golden
,
CO, June 6–9, Association of Iron and Steel Engineers
, Warrendale, PA.
3.
Opbroek
,
E. G.
,
2009
,
Advanced High Strength Steel (AHSS) Application Guidelines: Version 4.1
,
World Steel Association
, Brussels, Belgium, p. v.
4.
Cole
,
G. S.
, and
Sherman
,
A. M.
,
1995
, “
Lightweight Materials for Automotive Applications
,”
Mater. Charact.
,
35
, pp.
3
9
.10.1016/1044-5803(95)00063-1
5.
Hall
,
J. N.
,
2008
, “
50 Year Perspective of Automotive Engineering Body Materials and an Analysis of the Future
,” Great Designs in Steel 2008, American Iron and Steel Institute, Warren, MI.
6.
Johnson
,
J.
,
1995
, “
The Dominant Material for the Automotive Industry
,”
Welding Rev. Int.
, pp.
125
127
.
7.
Schultz
,
R. A.
, and
Abraham
,
A. K.
,
2009
, “
Metallic Material Trends for North American Light Vehicles
,” Great Designs in Steel 2009, American Iron and Steel Institute, Warren, MI.
8.
Goodwin
,
G. M.
,
1968
, “
Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop
,”
SAE
Technical Paper 680093.10.4271/680093
9.
Keeler
,
S. P.
,
1969
, “
Circular Grid System—A Valuable Aid for Evaluation Sheet Forming
,”
SAE
Technical Paper 680092.10.4271/680092
10.
Keeler
,
S. P.
, and
Backofen
,
W. A.
,
1964
, “
Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches
,”
ASM Trans. Q.
,
56
(
11
), pp.
25
48
.
11.
Marciniak
,
Z.
, and
Kuczynski
,
K.
,
1967
, “
Limit Strains in the Process of Stretch Forming Sheet Metal
,”
Int. J. Mech. Sci.
,
9
, pp.
609
620
.10.1016/0020-7403(67)90066-5
12.
Bleck
,
W.
,
Deng
,
Z.
,
Papamantellos
,
K.
, and
Gusek
,
C. O.
,
1998
, “
A Comparative Study of the Forming-Limit Diagram Models for Sheet Steels
,”
J. Mater. Process. Technol.
,
83
, pp.
223
230
.10.1016/S0924-0136(98)00066-1
13.
Burford
,
D. A.
, and
Wagoner
,
R. H.
,
1989
, “A More Realistic Method for Predicting the Forming Limits of Metal Sheets,” Forming Limit Diagrams: Concepts, Methods, and Applications,
R. H.
Wagoner
,
K. S.
Chan
, and
S. P.
Keeler
, eds., The Metallurgical Society, Warrendale, PA, pp.
167
182
.
14.
Embury
,
J. D.
, and
Duncan
,
J. L.
,
1981
, “
Formability Maps
,”
Ann. Rev. Mater. Sci.
,
11
, pp.
505
521
.10.1146/annurev.ms.11.080181.002445
15.
Graf
,
A.
, and
Hosford
,
W. F.
,
1990
, “
Calculations of Forming Limit Diagrams
,”
Metall. Trans. A
,
21A
, pp.
87
94
.10.1007/BF02656427
16.
Rees
,
D. W. A.
,
2001
, “
Factors Influencing the FLD of Automotive Sheet Metal
,”
J. Mater. Process. Technol.
,
118
, pp.
1
8
.10.1016/S0924-0136(01)01030-5
17.
Sriram
,
S.
, and
Urban
,
D.
,
2003
, “
Formability Characterization of a New Generation of High Strength Steels
,” AISI/DOE Technology Roadmap Program, U.S. Department of Energy, Oak Ridge, TN.
18.
Wagoner
,
R. H.
,
2006
,
Advanced High-Strength Steels: Fundamental Research Issues
,
R. H.
Wagoner
, ed.,
National Science Foundation, Department of Energy, Auto-Steel Partnership
,
Arlington, VA
.
19.
Wu
,
J.
,
Zhou
,
D. J.
,
Zhang
,
L.
,
Zhou
,
Y. J.
,
Du
,
C. Q.
, and
Shi
,
M. F.
,
2006
, “
A Failure Criterion for Stretch Bendability of Advanced High Strength Steels
,” SAE International,
SAE
Paper No. 2006-01-0349.10.4271/2006-01-0349
20.
Stoughton
,
T.
,
Xia
,
C.
,
Du
,
C.
, and
Shi
,
M.
,
2006
, “
Challenges for Constitutive Models for Forming of Advanced Steels
,”
R. H.
Wagoner
, ed., NSF Workshop, Arlington, VA.
21.
Chen
,
X. M.
,
Du
,
C.
,
Wu
,
X.
,
Zhu
,
X.
, and
Liu
,
S.-D.
,
2009
, “
Sheet Metal Shearing and Edge Characterization of Dual Phase Steels
,” International Deep Drawing Research Group Annual Conference (IDDRG 2009), Golden, CO, June 1–3, pp.
809
823
.
22.
Sklad
,
M. P.
,
2008
, “
Analysis of Deformation in the Shear and Shear-Tension Tests
,” 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (Numisheet 2008),
Interlaken
,
Switzerland
, September 1–5, pp.
91
95
.
23.
Walp
,
M. S.
,
Wurm
,
A.
III
,
Siekirk
,
J.
, and
Desai
,
A. K.
,
2006
, “
Shear Fracture in Advanced High Strength Steels
,”
SAE
Technical Paper 2006-01-1433.10.4271/2006-01-1433
24.
Haung
,
M.
,
Zhang
,
L.
, and
Yang
,
L.
,
2008
, “
On the Failure of AHSS at Tooling Radius
,” 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (Numisheet 2008), Interlaken, Sweden, September 1–5, pp.
307
309
.
25.
Kim
,
H.
,
Bandar
,
A. R.
,
Yang
,
Y. P.
,
Sung
,
J. H.
, and
Wagoner
,
R. H.
,
2009
, “
Failure Analysis of Advanced High Strength Steels (AHSS) During Draw Bending
,” International Deep Drawing Research Group Annual Conference (IDDRG 2009), Golden, CO, June 1–3, pp.
449
460
.
26.
Damborg
,
F. F.
,
1998
, “
Bending-Under-Tension Formability
,” Ph.D. thesis, Aalborg University, Aalborg, Denmark.
27.
Bai
,
Y.
, and
Wierzbicki
,
T.
,
2008
, “
Predicting Fracture of AHSS Sheets on the Punch and Die Radii and Sidewall
,” 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes (Numisheet 2008), Interlaken, Sweden, September 1–5.
28.
Hudgins
,
A.
,
Matlock
,
D.
,
Speer
,
J.
,
Fekete
,
J.
, and
Walp
,
M.
,
2007
, “
The Susceptibility to Shear Fracture in Bending of Advanced High Strength Sheet Steels
,” MS&T Conference, Detroit, MI, September 16–20, pp.
145
157
.
29.
Kim
,
J. H.
,
Sung
,
J. H.
,
Matlock
,
D. K.
,
Kim
,
D. Y.
, and
Wagoner
,
R. H.
,
2010
, “
Predicting Shear Failure of Dual-Phase Steels
,”
AIP Conf. Proc.
,
1
, pp.
63
70
.10.1063/1.3457615
30.
Choi
,
K. S.
,
Liu
,
W. N.
,
Sun
,
X.
, and
Khaleel
,
M. A.
,
2009
, “
Microstructure-Based Constitutive Modeling of TRIP Steel: Prediction of Ductility and Failure Modes Under Different Loading Conditions
,”
Acta Mater.
,
57
, pp.
2592
2604
.10.1016/j.actamat.2009.02.020
31.
Kim
,
J. H.
,
Sung
,
J. H.
,
Kun
,
P.
, and
Wagoner
,
R. H.
,
2011
, “
The Shear Fracture of Dual-Phase Steel
,”
Int. J. Plast.
,
27
, pp.
1658
1676
.10.1016/j.ijplas.2011.02.009
32.
Krempaszky
,
C.
,
Ocenasek
,
J.
,
Espinoza
,
V.
,
Werner
,
E.
,
Hebesberger
,
T.
, and
Pichler
,
A.
,
2007
, “
Micromechanical Modeling of the Formability of Dual-Phase Steels
,”
MS&T Conference
,
Detroit, MI
, September 16–20, pp.
31
43
.
33.
Larour
,
P.
,
Rusinek
,
A.
,
Klepaczko
,
J. R.
, and
Bleck
,
W.
,
2007
, “
Effects of Strain Rate and Identification of Material Constants for Three Automotive Steels
,”
Steel Res. Int.
,
78
, pp.
348
357
.10.2374/SRI06SP126-78-2007-348
34.
Sung
,
J. H.
,
Kim
,
J. H.
, and
Wagoner
,
R. H.
,
2010
,
A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature
,”
Int. J. Plast.
,
26
, pp.
1746
1771
.10.1016/j.ijplas.2010.02.005
35.
Hudgins
,
A. W.
,
Matlock
,
D. K.
,
Speer
,
J. G.
, and
Tyne
,
C. J. V.
,
2010
, “
Prediction Instability at Die Radii in Advanced High Strength Steels
,”
J. Mater. Process. Technol.
,
210
(
5
), pp.
741
750
.10.1016/j.jmatprotec.2009.12.012
36.
Shih
,
H. C.
,
Shi
,
M. F.
,
Xia
,
Z. C.
, and
Zeng
,
D.
,
2009
, “
Experimental Study on Shear Fracture of Advanced High Strength Steels: Part II
,”
ASME 2009 International Conference on Manufacturing Science and Engineering (MSEC 2009)
,
West Lafayette. IN
, October 4–7,
ASME
Paper no. MSEC2009-84070, pp.
513
519
.10.1115/MSEC2009-84070
37.
Demeri
,
M. Y.
,
1981
, “
The Stretch-Bend Forming of Sheet Metal
,”
J. Appl. Metalworking
,
2
(
1
), pp.
3
10
.10.1007/BF02833993
38.
Narayanaswamy
,
O. S.
, and
Demeri
,
M. Y.
,
1983
, “
Analysis of the Angular Stretch Bend Test: Novel Techniques in Metal Deformation Testing
,”
The Metallurgical Society
,
St. Louis, MO
, pp.
99
112
.
39.
Haruff
,
J. P.
,
Hylton
,
T. A.
, and
Matlock
,
D. K.
,
1993
, “
Frictional Response of Electro-Galvanized Sheet Steels
,”
The Physical Metallurgy of Zinc Coated Steel
,
The Minerals, Metals and Materials Society
, Warrendale, PA, pp.
295
307
.
40.
Vallance
,
D. W.
, and
Matlock
,
D. K.
,
1992
, “
Application of the Bending-Under-Tension Friction Test to Coated Sheet Steels
,”
J. Mater. Eng. Perform.
,
1
, pp.
685
694
.10.1007/BF02649250
41.
Wenzloff
,
G. J.
,
Hylton
,
T. A.
, and
Matlock
,
D. K.
,
1992
, “
A New Procedure for the Bending Under Tension Friction Test
,”
J. Mater. Eng. Perform.
,
1
, pp.
609
613
.10.1007/BF02649242
42.
GMNA
,
2007
, GMNA Materials Lab., Pontiac, MI.
43.
Fekete
,
J.
,
2009
, private communication.
44.
Karelova
,
A.
,
Krempaszky
,
C.
,
Werner
,
E.
,
Tsipouridis
,
P.
,
Hebesberger
,
T.
, and
Pichler
,
A.
,
2009
, “
Hole Expansion of Dual-Phase and Complex-Phase AHS Steels—Effect of Edge Conditions
,”
Steel Res. Int.
,
80
, pp.
71
77
.10.2374/SRI08SP110
45.
Shi
,
M. F.
, and
Chen
,
X.
,
2007
, “
Prediction of Stretch Flangeability Limits of Advanced High Strength Steels Using Hole Expansion Test
,”
SAE
Technical Paper 2007-01-1693.10.4271/2007-01-1693
46.
Sung
,
J.
,
2010
, “
The Causes of “Shear Fracture” of Dual-Phase Steels
,” Ph.D. thesis, Ohio State University, Columbus, OH.
47.
Dykeman
,
J.
,
2009
, “
Material Property and Formability Characterization of Various High Strength Dual Phase Steels
,”
Altan
,
T.
, ed., Workshop on Forming Advanced High Strength Steels (AHSS), Ohio State University, Columbus, OH, April 29.
You do not currently have access to this content.