This paper discusses the application of a characteristic strain model (CSM) to analyze the creep behavior of rotating components. First, simple cylinders are analyzed at variable loads and different model constants. A closed-form analytical solution for the steady-state stress and the location of the skeletal point in the rotating solid cylinder are obtained. Then, the hollow cylinder behavior is investigated by numerical analysis, and the skeletal point location is shown to be independent of the applied load. Finally, a numerical creep analysis of a steam turbine rotor is carried out with a detailed examination of the stress and creep strain fields in the rotor disk. The existence of multiple skeletal points in the rotor disk, as well as the independence of their locations of the creep data, is shown.

References

1.
Viswanathan
,
R.
,
1989
,
Damage Mechanisms and Life Assessment of High-Temperature Components
,
ASM International
,
Metals Park, OH
.
2.
Viswanathan
,
R.
, and
Stringer
,
J.
,
2000
, “
Failure Mechanisms of High Temperature Components in Power Plants
,”
ASME J. Eng. Mater. Technol.
,
122
(
3
), pp.
246
255
.
3.
Yao
,
H. T.
,
Xuan
,
F. Z.
,
Wang
,
Z.
, and
Tu
,
S. T.
,
2007
, “
A Review of Creep Analysis and Design Under Multi-Axial Stress States
,”
Nucl. Eng. Des.
,
237
(
18
), pp.
1969
1986
.
4.
Holdsworth
,
S. R.
,
Askins
,
M.
,
Baker
,
A.
,
Gariboldi
,
E.
,
Holmström
,
S.
,
Klenk
,
A.
,
Ringel
,
M.
,
Merckling
,
G.
,
Sandstrom
,
R.
,
Schwienheer
,
M.
, and
Spigarelli
,
S.
,
2008
, “
Factors Influencing Creep Model Equation Selection
,”
Int. J. Pressure Vessels Piping
,
85
, pp.
80
88
.
5.
Bolton
,
J.
,
2005
, “
A ‘Characteristic Strain’ Model for Creep
,”
ECCC/IMechE
Creep and Fracture in High Temperature Components—Design and Life Assessment Issues Conference, London, Sept. 12–14.
6.
Bolton
,
J.
,
2008
, “
Analysis of Structures Based on a Characteristic-Strain Model of Creep
,”
Int. J. Pressure Vessels Piping
,
85
, pp.
108
116
.
7.
Banaszkiewicz
,
M.
,
2015
, “
Multilevel Approach to Lifetime Assessment of Steam Turbines
,”
Int. J. Fatigue
,
73
, pp.
39
47
.
8.
Boyle
,
J. T.
,
2011
, “
The Behaviour of Structures Based on the Characteristic Strain Model of Creep
,”
Int. J. Pressure Vessels Piping
,
88
, pp.
473
481
.
9.
Gupta
,
V. K.
,
Singh
,
S. B.
,
Chandrawat
,
H. N.
, and
Ray
,
S.
,
2005
, “
Modeling of Creep Behavior of a Rotating Disc in the Presence of Both Composition and Thermal Gradients
,”
ASME J. Eng. Mater. Technol.
,
127
(
1
), pp.
97
105
.
10.
Norton
,
F. H.
,
1929
,
The Creep of Steel at High Temperatures
,
McGraw-Hill
,
London
.
11.
Bonora
,
N.
, and
Esposito
,
L.
,
2010
, “
Mechanism Based Creep Model Incorporating Damage
,”
ASME J. Eng. Mater. Technol.
,
132
(
2
), p.
021013
.
12.
Chmielniak
,
T.
,
Kosman
,
G.
, and
Rusin
,
A.
,
1990
,
Creep of Thermal Turbines Components
,
WNT
,
Warsaw, Poland
(in Polish).
13.
Webster
,
G. A.
, and
Ainsworth
,
R. A.
,
1994
,
High Temperature Component Life Assessment
,
Chapman & Hall
,
London
.
14.
Lipka
,
J.
,
1967
,
Strength of Rotating Machinery
,
WNT
,
Warsaw, Poland
(in Polish).
15.
Boyle
,
J. T.
,
2012
, “
The Creep Behaviour of Simple Structures With a Stress Range-Dependent Constitutive Model
,”
Arch. Appl. Mech.
,
82
(
4
), pp.
495
514
.
16.
Binda
,
L.
,
Holdsworth
,
S. R.
, and
Mazza
,
E.
,
2010
, “
The Exhaustion of Creep Ductility in 1CrMoV Steel
,”
Int. J. Pressure Vessels Piping
,
87
(
6
), pp.
319
325
.
You do not currently have access to this content.