Abstract

In this study, we developed a multi-order, phase field model to compute the stress distributions in anisotropically elastic, inhomogeneous polycrystals and study stress-driven grain boundary migration. In particular, we included elastic contributions to the total free energy density and solved the multicomponent, nonconserved Allen–Cahn equations via the semi-implicit Fourier spectral method. Our analysis included specific cases related to bicrystalline planar and curved systems as well as polycrystalline systems with grain orientation and applied strain conditions. The evolution of the grain boundary confirmed the strong dependencies between grain orientation and applied strain conditions and the localized stresses were found to be maximum within grain boundary triple junctions.

References

1.
Tjong
,
S. C.
, and
Chen
,
H.
,
2004
, “
Nanocrystalline Materials and Coatings
,”
Mater. Sci. Eng. R
,
45
(
1–2
), pp. 1–88.10.1016/j.mser.2004.07.001
2.
Liu
,
Z. J.
,
Zhang
,
C. H.
,
Shen
,
Y. G.
, and
Mai
,
Y.-W.
,
2004
, “
Monte Carlo Simulation of Nanocrystalline TiN/Amorphous SiNx Composite Films
,”
J. Appl. Phys.
,
95
(
2
), p. 758.10.1063/1.1633650
3.
Lu
,
C.
,
Mai
,
Y.-W.
, and
Shen
,
Y. G.
,
2006
, “
Recent Advances on Understanding the Origin of Superhardness in Nanocomposite Coatings: A Critical Review
,”
J. Mater. Sci.
,
41
(
3
), pp. 937–950.10.1007/s10853-006-6577-9
4.
Yang
,
W.
,
Chen
,
L.
, and
Messing
,
G.
,
1995
, “
Computer Simulation of Anisotropic Grain Growth
,”
Mater. Sci. Eng. A
,
195
(
1–2
), pp. 179–187.10.1016/0921-5093(94)06517-9
5.
Fan
,
D.
, and
Chen
,
L.-Q.
,
1997
, “
Diffusion-Controlled Grain Growth in Two-Phase Solids
,”
Acta Mater.
,
45
(
8
), pp. 3297–3310.10.1016/S1359-6454(97)00022-0
6.
Fan
,
D.
,
Chen
,
S. P.
, and
Chen
,
L. Q.
,
1999
, “
Computer Simulation of Grain Growth Kinetics With Solute Drag
,”
J. Mater. Res.
,
14
(
3
), pp. 1113–1123.10.1557/JMR.1999.0147
7.
Blikstein
,
P.
, and
Tschiptschin
,
A. P.
,
1999
, “
Monte Carlo Simulation of Grain Growth
,”
Mater. Res.
,
2
(
3
), pp. 133–137.10.1590/S1516-14391999000300004
8.
Chen
,
L. Q.
,
2002
, “
Phase-Field Models for Microstructure Evolution
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp. 113–140.10.1146/annurev.matsci.32.112001.132041
9.
Boettinger
,
W. J.
,
Warren
,
J. A.
,
Beckermann
,
C.
, and
Karma
,
A.
,
2002
, “
Phase Field Simulation of Solidification
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp. 163–194.10.1146/annurev.matsci.32.101901.155803
10.
Granasy
,
L.
,
Pusztai
,
T.
,
Borzsonyi
,
T.
,
Toth
,
G.
,
Tegze
,
G.
,
Warren
,
J. A.
, and
Douglas
,
J. F.
,
2006
, “
Phase Field Theory of Crystal Nucleation and Polycrystalline Growth: A Review
,”
J. Mater. Res.
,
21
(
2
), pp. 309–319.10.1557/jmr.2006.0011
11.
Emmerich
,
H.
,
2008
, “
Advances of and by Phase-Field Modeling in Condensed-Matter Physics
,”
Adv. Phys.
,
57
(
1
), pp. 1–87.10.1080/00018730701822522
12.
Moelans
,
N.
,
Blanpain
,
B.
, and
Wollants
,
P.
,
2008
, “
An Introduction to Phase-Field Modeling of Microstructure Evolution
,”
Calphad
,
32
(
2
), pp. 268–294.10.1016/j.calphad.2007.11.003
13.
Steinbach
,
I.
,
2009
, “
Phase-Field Models in Materials Science
,”
Modell. Simul. Mater. Sci. Eng.
,
17
(
7
), pp. 1–31.10.1088/0965-0393/17/7/073001
14.
Novikov
,
V. Y.
,
1999
, “
Texture Development During Grain Growth in Polycrystals With Strong Preferred Orientation
,”
Acta Mater.
,
47
(
6
), pp. 1935–1943.
15.
Humphreys
,
F. J.
,
1997
, “
A Unified Theory of Recovery, Recrystallization and Grain Growth, Based on the Stability and Growth of Cellular Microstructures—Part I: The Basic Model
,”
Acta Mater.
,
45
(
10
), pp. 4231–4240.10.1016/S1359-6454(97)00070-0
16.
Mehnert
,
K.
, and
Klimanek
,
P.
,
1996
, “
Monte Carlo Simulation of Grain Growth in Textured Metals
,”
Scr. Mater.
,
35
(
6
), pp. 699–704.10.1016/1359-6462(96)00201-1
17.
Grest
,
G. S.
,
Srolovitz
,
D. J.
, and
Andreson
,
M. P.
,
1985
, “
Computer Simulation of Grain Growth IV. Anisotropic Grain Boundary Energies
,”
Acta Metall.
,
33
(
3
), pp. 509–520.10.1016/0001-6160(85)90093-8
18.
Ono
,
N.
,
Kimura
,
K.
, and
Watanabe
,
T.
,
1999
, “
Monte Carlo Simulation of Grain Growth With the Full Spectra of Grain Orientation and Grain Boundary Energy
,”
Acta Mater.
,
47
(
3
), pp. 1007–1017.10.1016/S1359-6454(98)00391-7
19.
Allen, J. B. , 2016, “
Simulations of Anisotropic Texture Evolution on Paramagnetic and Diamagnetic Materials Subject to a Magnetic Field Using Q-State Monte Carlo
,”
ASME J. Eng. Mat. Technol.
,
138
(4), p. 041012.10.1115/1.4033908
20.
Cai
,
Z.-X.
, and
Welch
,
D. O.
,
1994
, “
Simulation Study of Grain Growth in Layered Materials; Application to YBa2Cu3O7 Ceramics
,”
Philos. Mag. B
,
70
(
1
), pp. 141–150.10.1080/01418639408240202
21.
Anderson
,
M. P.
,
Srolovitz
,
D. J.
,
Grest
,
G. S.
, and
Sahni
,
P. S.
,
1984
, “
Computer Simulation of Grain Growth—Part I: Kinetics
,”
Acta Metall.
,
32
(
5
), pp. 783–791.10.1016/0001-6160(84)90151-2
22.
Allen
,
J. B.
,
Cornwell
,
C. F.
,
Devine
,
B. D.
, and
Welch
,
C. R.
,
2013
, “
Simulations of Anisotropic Grain Growth in Single Phase Materials Using Q-State Monte Carlo
,”
Comput. Mater. Sci.
,
71
, pp. 25–32.10.1016/j.commatsci.2013.01.022
23.
Soares
,
A.
,
Ferro
,
A. C.
, and
Fortes
,
M. A.
,
1985
, “
Computer Simulation of Grain Growth in a Bimodal Polycrystal
,”
Scr. Metall.
,
19
(
12
), pp. 1491–1496.
24.
Kawasaki
,
K.
,
Nagai
,
T.
, and
Nagashima
,
K.
,
1989
, “
Vertex Models for Two-Dimensional Grain Growth
,”
Philos. Mag. B
,
60
(
3
), pp. 399–421.10.1080/13642818908205916
25.
Fuchizaki
,
K.
,
Kusaba
,
T.
, and
Kawasaki
,
K.
,
1995
, “
Computer Modeling of Three-Dimensional Cellular-Pattern Growth
,”
Philos. Mag. B
,
71
(
3
), pp. 333–357.10.1080/13642819508239038
26.
Weygand
,
D.
,
Bréchet
,
Y.
, and
Léepinoux
,
J.
,
1998
, “
A Vertex Dynamics Simulation of Grain Growth in Two Dimensions
,”
Philos. Mag. B
,
78
(
4
), pp. 329–352.10.1080/13642819808206731
27.
Baxter
,
R. J.
,
1982
,
Exactly Solved Models in Statistical Mechanics
,
Academic Press
,
London
.
28.
Burke
,
J. E.
, and
Turnbull
,
D.
,
1952
, “
Recrystallization and Grain Growth
,”
Prog. Met. Phys.
,
3
, pp. 220–244.10.1016/0502-8205(52)90009-9
29.
Kazaryan
,
A.
,
Wang
,
Y.
,
Dregia
,
S. A.
, and
Patton
,
B. R.
,
2000
, “
Generalized Phase-Field Model for Computer Simulation of Grain Growth in Anisotropic Systems
,”
Phys. Rev. B
,
61
(
21
), p. 14275.10.1103/PhysRevB.61.14275
30.
Suwa
,
Y.
, and
Saito
,
Y.
,
2003
, “
Computer Simulation of Grain Growth by the Phase Field Mode. Effect of Interfacial Energy on Kinetics of Grain Growth
,”
Mater. Trans.
,
44
(
11
), pp. 2245–2251.10.2320/matertrans.44.2245
31.
Krill III
,
C. E.
, and
Chen
,
L. Q.
,
2002
, “
Computer Simulation of 3-D Grain Growth Using a Phase-Field Model
,”
Acta Mater.
,
50
(
12
), pp. 3059–3075.10.1016/S1359-6454(02)00084-8
32.
Tien
,
J. K.
, and
Copley
,
S. M.
,
1971
, “
The Effect of Uniaxial Stress on the Periodic Morphology of Coherent Gamma Prime Precipitates in Nickel-Base Superalloy Crystals
,”
Metall. Trans.
,
2
(1), pp. 215–219.10.1007/BF02662660
33.
Pollock
,
T. M.
, and
Argon
,
A. S.
,
1994
, “
Directional Coarsening in Nickel-Base Single Crystals With High Volume Fractions of Coherent Precipitates
,”
Acta Metall. Mater.
,
42
(
6
), pp. 1859–1874.10.1016/0956-7151(94)90011-6
34.
Veron
,
M.
,
Brechet
,
Y.
, and
Louchet
,
F.
,
1996
, “
Strain Induced Directional Coarsening in Ni Based Alloys
,”
Scr. Mater.
,
34
(
12
), pp. 1883–1886.10.1016/1359-6462(96)00062-0
35.
Carpenter
,
G. J.
,
1973
, “
The Dilatational Misfit of Zirconium Hydrides Precipitated in Zirconium
,”
J. Nucl. Mater.
,
48
(
3
), pp. 264–266.10.1016/0022-3115(73)90022-6
36.
Zanellato
,
O.
,
Preuss
,
M.
,
Buffiere
,
J. Y.
,
Ribeiro
,
F.
,
Steuwer
,
A.
,
Desquines
,
J.
,
Andrieux
,
J.
, and
Krebs
,
B.
,
2012
, “
Synchrotron Diffraction Study of Dissolution and Precipitation Kinetics of Hydrides in Zircaloy-4
,”
J. Nucl. Mater.
,
420
(
1–3
), pp. 537–547.10.1016/j.jnucmat.2011.11.009
37.
Sridhar
,
N.
,
Richman
,
J. M.
, and
Srolovitz
,
D. J.
,
1997
, “
Microstructural Stability of Stressed Lamellar and Fiber Composites
,”
Acta Mater.
,
45
(
7
), pp. 2715–2733.10.1016/S1359-6454(96)00413-2
38.
Chen
,
L. Q.
, and
Wang
,
Y. Z.
,
1996
, “
The Continuum Field Approach to Modeling Microstructural Evolution
,”
J. Miner. Met. Mater. Soc.
,
48
(12), pp.
13
18
.10.1007/BF03223259
39.
Wang
,
Y. Z.
, and
Chen
,
C. L.
,
1999
, “
Simulation of Microstructure Evolution
,”
Methods in Materials Research
,
E. N.
Ksufmann
,
R.
Abbaschian
,
A.
Bocarsly
,
C. L.
Chien
, and
D.
Dollimore
, eds.,
Wiley
,
New York
, pp.
2a.3.1
2a.3.23
.
40.
Onuki
,
A.
,
1989
, “
Ginzburg-Landau Approach to Elastic Effects in the Phase Field Separation of Solids
,”
J. Phys. Soc. Jpn.
,
58
(
9
), p. 3065.
41.
Nishimori
,
H.
, and
Onuki
,
A.
,
1990
, “
Pattern Formation in Phase-Separating Alloys With Cubic Symmetry
,”
Phys. Rev. B
,
42
(
1
), pp. 980–983.10.1103/PhysRevB.42.980
42.
Sagui
,
C.
,
Orlikowski
,
D.
,
Somoza
,
A.
, and
Roland
,
C.
,
1998
, “
Three-Dimensional Simulations of Ostwald Ripening With Elastic Effects
,”
Phys. Rev. E
,
58
(
4
), p. 4092.10.1103/PhysRevE.58.R4092
43.
Sheng
,
G.
,
Bhattacharyya
,
S.
,
Zhang
,
H.
,
Chang
,
K.
,
Shang
,
S. L.
,
Mathaudhu
,
S. N.
,
Liu
,
Z. K.
, and
Chen
,
L. Q.
,
2012
, “
Effective Elastic Properties of Polycrystals Based on Phase-Field Description
,”
Mater. Sci. Eng. A
,
554
(1), pp. 67–71.10.1016/j.msea.2012.06.012
44.
Hu
,
S. Y.
, and
Chen
,
L. Q.
,
2001
, “
A Phase-Field Model for Evolving Microstructures With Strong Elastic Inhomogeneity
,”
Acta Mater.
,
49
(11), pp.
1879
1890
.10.1016/S1359-6454(01)00118-5
45.
Yu
,
P.
,
Hu
,
S. Y.
,
Chen
,
L. Q.
, and
Du
,
Q.
,
2005
, “
An Iterative-Perturbation Scheme for Treating Inhomogeneous Elasticity in Phase-Field Models
,”
J. Comput. Phys.
,
208
(
1
), pp. 34–50.10.1016/j.jcp.2005.02.015
46.
Bhattacharyya
,
S.
,
Heo
,
T. W.
,
Chang
,
K.
, and
Chen
,
L. Q.
,
2012
, “
A Spectral Iterative Method for the Computation of Effective Properties of Elastically Inhomogeneous Polycrystals
,”
Commun. Comput. Phys.
,
11
(
3
), pp. 726–738.10.4208/cicp.290610.060411a
47.
Bhattacharyya
,
S.
,
Heo
,
T. W.
,
Chang
,
K.
, and
Chen
,
L. Q.
,
2011
, “
A Phase-Field Model of Stress Effect on Grain Boundary Migration
,”
Modell. Simul. Mater. Sci. Eng.
,
19
(
3
), pp. 1–17.10.1088/0965-0393/19/3/035002
48.
Moulinec
,
H.
, and
Suquet
,
P.
,
1998
, “
A Numerical Method for Computing the Overall Response of Nonlinear Composites With Complex Microstructure
,”
Comput. Methods Appl. Mech. Eng.
,
157
(
1–2
), pp. 69–94.10.1016/S0045-7825(97)00218-1
49.
Allen
,
S. M.
, and
Cahn
,
J. W.
,
1972
, “
Ground State Structures in Ordered Binary Alloys With Second Neighbor Interactions
,”
Acta Metall.
,
20
(
3
), pp. 423–433.10.1016/0001-6160(72)90037-5
50.
Tonks
,
M. R.
,
Gaston
,
D.
,
Millett
,
P. C.
,
Andrs
,
D.
, and
Talbot
,
P.
,
2012
, “
An Object-Oriented Finite Element Framework for Multiphysics Phase Field Simulations
,”
Comput. Mater. Sci.
,
51
(
1
), pp. 20–29.10.1016/j.commatsci.2011.07.028
51.
Wang
,
Y.
, and
Khachaturyan
,
A. G.
,
1997
, “
Three-Dimensional Field Model and Computer Modeling of Martensitic Transformations
,”
Acta Mater.
,
45
(
2
), pp. 759–773.10.1016/S1359-6454(96)00180-2
52.
Artemev
,
A.
,
Jin
,
Y.
, and
Khachaturyan
,
A. G.
,
2001
, “
Three-Dimensional Phase Field Model of Proper Martensitic Transformation
,”
Acta Mater.
,
49
(
7
), pp. 1165–1177.10.1016/S1359-6454(01)00021-0
53.
Smith
,
C. S.
,
1952
, “
Grain Shapes and Other Metallurgical Applications of Topology
,”
Metal Interfaces
,
ASM International
,
Materials Park, OH
.
54.
Kamaya
,
M.
,
Kawamura
,
Y.
, and
Kitamura
,
T.
,
2007
, “
Three-Dimensional Local Stress Analysis on Grain Boundaries in Polycrystalline Material
,”
Int. J. Solids Struct.
,
44
(
10
), pp. 3267–3277.10.1016/j.ijsolstr.2006.09.020
55.
Sumigawa
,
T.
,
Kitamura
,
T.
, and
Ohishi
,
K.
,
2004
, “
Slip Behaviour Near a Grain Boundary in High-Cycle Fatigue of Poly-Crystal Copper
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
6
), pp. 495–503.10.1111/j.1460-2695.2004.00776.x
You do not currently have access to this content.