2219Al and 2219Al + 0.1 wt % Ag alloys were processed by casting route. The hot compression tests were carried out at constant true strain rates and temperatures in the range of 10−3 to 101 s−1 and 300–500 °C, respectively. Flow stress of the alloy decreases with the addition of silver. The flow stress of both alloys increases with the decrease in deformation temperature and the increase in strain rates. Constitutive models correlating the peak flow stress with deformation temperature and strain rates for the two alloys were developed using hyperbolic–sine relationship. The activation energy for hot deformation of 2219 Al alloy decreases with the addition of silver. Comparison of the predicted and experimental values of peak flow stress reveals that 92% of the data could be predicted within a deviation error of ±10% indicating good predictive capability for the developed constitutive relationships.

References

1.
Sukumaran
,
K.
,
Ravikumar
,
K. K.
,
Pillai
,
S. G. K.
,
Rajan
,
T. P. D.
,
Ravi
,
M.
,
Pillai
,
R. M.
, and
Pai
,
B. C.
,
2008
, “
Studies on Squeeze Casting of Al 2124 Alloy and 2124-10% SiCp Metal Matrix Composite
,”
Mater. Sci. Eng.: A
,
490
(
1–2
), pp.
235
241
.
2.
Li
,
H.
,
Huang
,
D.
,
Kang
,
W.
,
Liu
,
J.
,
Ou
,
Y.
, and
Li
,
D.
,
2016
, “
Effect of Different Aging Processes on the Microstructure and Mechanical Properties of a Novel Al–Cu–Li Alloy
,”
J. Mater. Sci. Technol.
,
32
(
10
), pp.
1049
1053
.
3.
An
, L.-H.
,
Cai
,
Y.
,
Liu
,
W.
,
Yuan
,
S.-J.
,
Zhu
,
S.-Q.
, and
Meng
,
F.-C.
,
2012
, “
Effect of Pre-Deformation on Microstructure and Mechanical Properties of 2219 Aluminum Alloy Sheet by Thermomechanical Treatment
,”
Trans. Nonferrous Met. Soc. China
,
22
(Suppl. 2), pp.
s370
s375
.
4.
Wang
,
J.
,
Yi
,
D.
,
Su
,
X.
, and
Yin
,
F.
,
2008
, “
Influence of Deformation Ageing Treatment on Microstructure and Properties of Aluminum Alloy 2618
,”
Mater. Charact.
,
59
(
7
), pp.
965
968
.
5.
Li
,
H.
,
Li
,
Z.
,
Song
,
M.
,
Liang
,
X.
, and
Guo
,
F.
,
2010
, “
Hot Deformation Behavior and Microstructural Evolution of Ag-Containing 2519 Aluminum Alloy
,”
Mater. Des.
,
31
(
4
), pp.
2171
2176
.
6.
Hirosawa
,
S.
,
Sato
,
T.
,
Kamio
,
A.
, and
Flower
,
H. M.
,
2000
, “
Classification of the Role of Microalloying Elements in Phase Decomposition of Al Based Alloys
,”
Acta Mater.
,
48
(
8
), pp.
1797
1806
.
7.
Yu
,
K.
,
Li
,
W.
,
Li
,
S.
, and
Zhao
,
J.
,
2004
, “
Mechanical Properties and Microstructure of Aluminum Alloy 2618 With Al3(Sc, Zr) Phases
,”
Mater. Sci. Eng.: A
,
368
(
1–2
), pp.
88
93
.
8.
Raju
,
P. N.
,
Rao
,
K. S.
,
Reddy
,
G. M.
,
Kamaraj
,
M.
, and
Rao
,
K. P.
,
2007
, “
Microstructure and High Temperature Stability of Age Hardenable AA2219 Aluminium Alloy Modified by Sc, Mg and Zr Additions
,”
Mater. Sci. Eng.: A
,
464
(
1–2
), pp.
192
201
.
9.
Banerjee
,
S.
,
Robi
,
P. S.
,
Srinivasan
,
A.
, and
Lakavath
,
P. K.
,
2010
, “
Effect of Trace Additions of Sn on Microstructure and Mechanical Properties of Al–Cu–Mg Alloys
,”
Mater. Des.
,
31
(
8
), pp.
4007
4015
.
10.
Wang
,
G.
,
Sun
,
Q.
,
Shan
,
L.
,
Zhao
,
Z.
, and
Yan
,
L.
,
2007
, “
Influence of Indium Trace Addition on the Precipitation Behavior in a 357 Cast Aluminum Alloy
,”
J. Mater. Eng. Perform.
,
16
(
6
), pp.
752
756
.
11.
Dong
,
Y.
,
Zhang
,
C.
,
Zhao
,
G.
,
Guan
,
Y.
,
Gao
,
A.
, and
Sun
,
W.
,
2016
, “
Constitutive Equation and Processing Maps of an Al–Mg–Si Aluminum Alloy: Determination and Application in Simulating Extrusion Process of Complex Profiles
,”
Mater. Des.
,
92
, pp.
983
997
.
12.
Shi
,
L.
,
Yang
,
H.
,
Guo
,
L. G.
, and
Zhang
,
J.
,
2014
, “
Constitutive Modeling of Deformation in High Temperature of a Forging 6005A Aluminum Alloy
,”
Mater. Des.
,
54
, pp.
576
581
.
13.
Chen
,
G.
,
Lin
,
F.
,
Yao
,
S.
,
Han
,
F.
,
Wei
,
B.
, and
Zhang
,
Y.
,
2016
, “
Constitutive Behavior of Aluminum Alloy in a Wide Temperature Range From Warm to Semi-Solid Regions
,”
J. Alloys Compd.
,
674
, pp.
26
36
.
14.
Shalbafi
,
M.
,
Roumina
,
R.
, and
Mahmudi
,
R.
,
2017
, “
Hot Deformation of the Extruded Mg–10Li–1Zn Alloy: Constitutive Analysis and Processing Maps
,”
J. Alloys Compd.
,
696
, pp.
1269
1277
.
15.
Wu
,
H.
,
Du
,
L.
, and
Liu
,
X.
,
2011
, “
Dynamic Recrystallization and Precipitation Behavior of Mn-Cu-V Weathering Steel
,”
J. Mater. Sci. Technol.
,
27
(
12
), pp.
1131
1138
.
16.
Banerjee
,
S.
,
Robi
,
P. S.
,
Srinivasan
,
A.
, and
Kumar
,
L. P.
,
2010
, “
High Temperature Deformation Behavior of Al–Cu–Mg Alloys Micro-Alloyed With Sn
,”
Mater. Sci. Eng.: A
,
527
(
10–11
), pp.
2498
2503
.
17.
Wang
,
G.
,
Xu
,
L.
,
Wang
,
Y.
,
Zheng
,
Z.
,
Cui
,
Y.
, and
Yang
,
R.
,
2011
, “
Processing Maps for Hot Working Behavior of a PM TiAl Alloy
,”
J. Mater. Sci. Technol.
,
27
(
10
), pp.
893
898
.
18.
Yang
,
Q.-Y.
,
Dong
,
Y.
,
Zhang
,
Z.-Q.
,
Cao
,
L.-F.
,
Wu
,
X.-D.
, and
Huang
,
G.-J.
,
Qing
.,
L.
,
2016
, “
Flow Behavior and Microstructure Evolution of 6A82 Aluminium Alloy With High Copper Content During Hot Compression Deformation at Elevated Temperatures
,”
Trans. Nonferrous Met. Soc. China
,
26
(
3
), pp.
649
657
.
19.
Li
,
B.
,
Pan
,
Q.
, and
Yin
,
Z.
,
2014
, “
Characterization of Hot Deformation Behavior of as-Homogenized Al–Cu–Li–Sc–Zr Alloy Using Processing Maps
,”
Mater. Sci. Eng.: A
,
614
, pp.
199
206
.
20.
Park
,
S. Y.
, and
Kim
,
W. J.
,
2016
, “
Difference in the Hot Compressive Behavior and Processing Maps Between the as-Cast and Homogenized Al–Zn–Mg–Cu (7075) Alloys
,”
J. Mater. Sci. Technol.
,
32
(
7
), pp.
660
670
.
21.
Hu
,
H. E.
,
Zhen
,
L.
,
Yang
,
L.
,
Shao
,
W. Z.
, and
Zhang
,
B. Y.
,
2008
, “
Deformation Behavior and Microstructure Evolution of 7050 Aluminum Alloy During High Temperature Deformation
,”
Mater. Sci. Eng.: A
,
488
(
1–2
), pp.
64
71
.
22.
Medina
,
S. F.
, and
Hernandez
,
C. A.
,
1996
, “
General Expression of the Zener–Hollomon Parameter as a Function of the Chemical Composition of Low Alloy and Microalloyed Steels
,”
Acta Mater.
,
44
(
1
), pp.
137
148
.
23.
Smith
,
T. J.
,
Sehitoglu
,
H.
,
Fleury
,
E.
,
Maier
,
H. J.
, and
Allison
,
J.
,
1999
, “
Modeling High-Temperature Stress-Strain Behavior of Cast Aluminum Alloys
,”
Metall. Mater. Trans. A
,
30
(
1
), pp.
133
146
.
24.
Kaibyshev
,
R.
,
Sitdikov
,
O.
,
Mazurina
,
I.
, and
Lesuer
,
D. R.
,
2002
, “
Deformation Behavior of a 2219 Al Alloy
,”
Mater. Sci. Eng.: A
,
334
(
1–2
), pp.
104
113
.
25.
Liu
,
W.
,
Zhao
,
H.
,
Li
,
D.
,
Zhang
,
Z.
,
Huang
,
G.
, and
Liu
,
Q.
,
2014
, “
Hot Deformation Behavior of AA7085 Aluminum Alloy During Isothermal Compression at Elevated Temperature
,”
Mater. Sci. Eng.: A
,
596
, pp.
176
182
.
26.
Banerjee
,
S.
,
Robi
,
P. S.
, and
Srinivasan
,
A.
,
2012
, “
Prediction of Hot Deformation Behavior of Al–5.9% Cu–0.5% Mg Alloys With Trace Additions of Sn
,”
J. Mater. Sci.
,
47
(
2
), pp.
929
948
.
27.
McQueen
,
H. J.
, and
Ryan
,
N. D.
,
2002
, “
Constitutive Analysis in Hot Working
,”
Mater. Sci. Eng.: A
,
322
(
1–2
), pp.
43
63
.
28.
Liu
,
X. Y.
,
Pan
,
Q. L.
,
He
,
Y. B.
,
Li
,
W. B.
,
Liang
,
W. J.
, and
Yin
,
Z. M.
,
2009
, “
Flow Behavior and Microstructural Evolution of Al–Cu–Mg–Ag Alloy During Hot Compression Deformation
,”
Mater. Sci. Eng.: A
,
500
(
1–2
), pp.
150
154
.
29.
Shi
,
C.
,
Mao
,
W.
, and
Chen
,
X. G.
,
2013
, “
Evolution of Activation Energy During Hot Deformation of AA7150 Aluminum Alloy
,”
Mater. Sci. Eng.: A
,
571
, pp.
83
91
.
30.
Shi
,
C.
, and
Chen
,
X. G.
,
2014
, “
Effect of Zr Addition on Hot Deformation Behavior and Microstructural Evolution of AA7150 Aluminum Alloy
,”
Mater. Sci. Eng.: A
,
596
, pp.
183
193
.
31.
Shi
,
C.
, and
Chen
,
X. G.
,
2015
, “
Effects of Zr and V Micro-Alloying on Activation Energy During Hot Deformation of 7150 Aluminum Alloys
,” Light Metals 2015, pp.
163
167
.
32.
Ringer
,
S. P.
,
Hono
,
K.
,
Polmear
,
I. J.
, and
Sakurai
,
T.
,
1996
, “
Nucleation of Precipitates in Aged Al–Cu–Mg–(Ag) Alloys With High Cu:Mg Ratios
,”
Acta Mater.
,
44
(
5
), pp.
1883
1898
.
33.
Gang
,
C.
,
Wei
,
C.
,
Li
,
M.
,
Anzhen
,
G.
,
Juan
,
L.
,
Zhimin
,
Z.
, and
Shunqi
,
Z.
,
2015
, “
Strain-Compensated Arrhenius-Type Constitutive Model for Flow Behavior of Al-12Zn-2.4 Mg-1.2 Cu Alloy
,”
Rare Met. Mater. Eng.
,
44
(
9
), pp.
2120
2125
.
34.
Zhang
,
J.
,
Chen
,
B.
, and
Baoxiang
,
Z.
,
2012
, “
Effect of Initial Microstructure on the Hot Compression Deformation Behavior of a 2219 Alumnum Alloy
,”
Mater. Des.
,
34
, pp.
15
21
.
35.
Huang
,
X.
,
Zhang
,
H.
,
Han
,
Y.
,
Wu
,
W.
, and
Chen
,
J.
,
2010
, “
Hot Deformation Behavior of 2026 Aluminum Alloy During Compression at Elevated Temperature
,”
Mater. Sci. Eng.: A
,
527
(
3
), pp.
485
490
.
You do not currently have access to this content.