Abstract

The applicability of additive manufacturing (AM) continues to expand because of research and development efforts in industrial, academic, and governmental institutions. The lure of additive manufacturing lies in the quick time-to-market and ability to produce parts and components with high degrees of topographical complexity empowered by the layer-by-layer production approach. One challenge that is attracting a significant amount of attention is improving the multi-functionality of additively manufactured parts, as enabling multi-functionality will result in transitioning AM to a broader application domain. The objective of this paper is to report novel developments that improve the functionality of polymer-based parts by adding electrical conductivity and fluid management to the existing load-bearing capabilities. A space structure was 3D-printed using acrylonitrile butadiene styrene (ABS) with embedded internal channels throughout the entire structure and then sealed using an acetone-diluted epoxy. The inner surfaces of the embedded channels of the sealed structure were then metallized using an electroless silver-coating process; these processes were found to be robust and independent of the inner diameter and length of the structure. The electromechanical performance of the structure was verified by applying mechanical loading while monitoring the change in electrical resistivity. The latter was found to remain nearly constant up to the point of ultimate mechanical failure. Finite element modeling was used to identify the areas of structural weaknesses and assist in elucidating the failure modes. The results were found to be in good agreement with the experimental data.

References

1.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. Part B: Eng.
,
143
(
December 2017
), pp.
172
196
. 10.1016/j.compositesb.2018.02.012
2.
Ahn
,
S. H.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyping J.
,
8
(
4
), pp.
248
257
. 10.1108/13552540210441166
3.
Savolainen
,
J.
, and
Collan
,
M.
,
2020
, “
How Additive Manufacturing Technology Changes Business Models?—Review of Literature
,”
Addit. Manuf.
,
32
(
1
), p.
101070
. 10.1016/j.addma.2020.101070
4.
Shemelya
,
C.
,
De La Rosa
,
A.
,
Torrado
,
A. R.
,
Yu
,
K.
,
Domanowski
,
J.
,
Bonacuse
,
P. J.
,
Martin
,
R. E.
,
Juhasz
,
M.
,
Hurwitz
,
F.
,
Wicker
,
R. B.
,
Conner
,
B.
,
MacDonald
,
E.
, and
Roberson
,
D. A.
,
2017
, “
Anisotropy of Thermal Conductivity in 3D Printed Polymer Matrix Composites for Space Based Cube Satellites
,”
Addit. Manuf.
,
16
(
2010
), pp.
186
196
. 10.1016/j.addma.2017.05.012
5.
Hernandez
,
R.
,
Slaughter
,
D.
,
Whaley
,
D.
,
Tate
,
J.
, and
Asiabanpour
,
B.
,
2016
, “
Analyzing the Tensile, Compressive, and Flexural Properties of 3D Printed ABS P430 Plastic Based on Printing Orientation Using Fused Deposition Modeling
,”
Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
, pp.
939
950
.
6.
Sun
,
Q.
,
Rizvi
,
G. M.
,
Bellehumeur
,
C. T.
, and
Gu
,
P.
,
2008
, “
Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments
,”
Rapid Prototyping J.
,
14
(
2
), pp.
72
80
. 10.1108/13552540810862028
7.
Varotsis
,
A. B.
Introduction to SLA 3D Printing
”, https://www.3dhubs.com/knowledge-base/introduction-sla-3d-printing, Accessed February 8, 2018.
8.
Surma
,
R.
,
Sercer
,
M.
, and
Pilipovic
,
A.
,
2015
, “
Designing and Production of Polymer Product With Fused Deposition Modelling—Case Study
,”
Proceedings of 15th International Scientific Conference on Production Engineering –CIM2015
,
Croatia, Vodice
,
June 10–13
, pp.
221
226
.
9.
Weiss
,
L. E.
,
Merz
,
R.
,
Prinz
,
F. B.
,
Neplotnik
,
G.
,
Padmanabhan
,
P.
,
Schultz
,
L.
, and
Ramaswami
,
K.
,
1997
, “
Shape Deposition Manufacturing of Heterogeneous Structures
,”
J. Manuf. Syst.
,
16
(
4
), pp.
239
248
. 10.1016/S0278-6125(97)89095-4
10.
Kataria
,
A.
, and
Rosen
,
D. W.
,
2001
, “
Building Around Inserts: Methods for Fabricating Complex Devices in Stereolithography
,”
Rapid Prototyping J.
,
7
(
5
), pp.
253
261
. 10.1108/13552540110410459
11.
Lopes
,
A. J.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2012
, “
Integrating Stereolithography and Direct Print Technologies for 3D Structural Electronics Fabrication
,”
Rapid Prototyping J.
,
18
(
2
), pp.
129
143
. 10.1108/13552541211212113
12.
Robinson
,
C. J.
,
Stucker
,
B.
,
Lopes
,
A. J.
,
Wicker
,
R.
, and
Palmer
,
J.
,
2006
, “
Integration of Direct-Write (DW) and Ultrasonic Consolidation (UC) Technologies to Create Advanced Structures with Embedded Electrical Circuitry
,”
2006 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Sept. 14
, pp.
60
69
.
13.
Kim
,
H.
,
Torres
,
F.
,
Wu
,
Y.
,
Villagran
,
D.
,
Lin
,
Y.
, and
Tseng
,
T.-L.
,
2017
, “
Integrated 3D Printing and Corona Poling Process of PVDF Piezoelectric Films for Pressure Sensor Application
,”
Smart Mater. Struct.
,
26
(
8
), p.
085027
. 10.1088/1361-665X/aa738e
14.
Mosadegh
,
B.
,
Xiong
,
G.
,
Dunham
,
S.
, and
Min
,
J. K.
,
2015
, “
Current Progress in 3D Printing for Cardiovascular Tissue Engineering
,”
Biomed. Mater. (Bristol)
,
10
(
3
), p.
034002
. 10.1088/1748-6041/10/3/034002
15.
Huynh
,
N. U.
,
Smilo
,
J.
,
Blourchian
,
A.
,
Karapetian
,
A. V.
, and
Youssef
,
G.
,
2020
, “
Property-Map of Epoxy-Treated and As-Printed Polymeric Additively Manufactured Materials
,”
Int. J. Mech. Sci
,
181
(
1
), p.
105767
. 10.1016/j.ijmecsci.2020.105767
16.
Percoco
,
G.
,
Lavecchia
,
F.
, and
Galantucci
,
L. M.
,
2012
, “
Compressive Properties of FDM Rapid Prototypes Treated With a Low Cost Chemical Finishing
,”
Res. J. Appl. Sci., Eng. Technol.
,
4
(
19
), pp.
3838
3842
.
17.
Galantucci
,
L. M.
,
Lavecchia
,
F.
, and
Percoco
,
G.
,
2010
, “
Quantitative Analysis of a Chemical Treatment to Reduce Roughness of Parts Fabricated Using Fused Deposition Modeling
,”
CIRP Annals—Manuf. Technol.
,
59
(
1
), pp.
247
250
. 10.1016/j.cirp.2010.03.074
18.
Duty
,
C. E.
,
Kunc
,
V.
,
Compton
,
B.
,
Post
,
B.
,
Erdman
,
D.
,
Smith
,
R.
,
Lind
,
R.
,
Lloyd
,
P.
, and
Love
,
L.
,
2017
, “
Structure and Mechanical Behavior of Big Area Additive Manufacturing (BAAM) Materials
,”
Rapid Prototyping J.
,
23
(
1
), pp.
181
189
. 10.1108/RPJ-12-2015-0183
19.
Mattox
,
D. M.
,
1998
,
Handbook of Physical Vapor Deposition (PVD) Processing: Film Formation, Adhesion, Surface Preparation, and Contamination Control
,
Noyes Publications
,
Park Ridge, NJ
.
20.
Wheeler
,
H. A.
,
2007
, “
Formulas for the Skin Effect
,”
Proceedings IRE
,
30
(
9
), pp.
412
424
. 10.1109/JRPROC.1942.232015
21.
Bhobe
,
A. U.
, and
Cencich
,
T. P.
,
2004
, “
Spiral Antenna With Dual Dyson Balun Feed
,”
151
(
3
), pp.
527
533
. 10.1049/ip-map:20050026
22.
Cohen
,
L.
,
1907
,
The Influence of Frequency on the Resistance and Inductance of Solenoidal Coils
,
No. 76
US Government Printing Office.
You do not currently have access to this content.