Abstract

Dynamic strain aging (DSA) is a sudden increase in the strength of a material under certain combinations of temperatures and strain rates. Despite the phenomenon being reported in several other studies, the literature still lacks a specific constitutive model that can physically interpret its effect. Therefore, this work proposes a modification based on physical parameters to the Voyiadjis and Abed (VA) model to account for the effect of DSA in C45 steel. The resulting modified model is then coupled with an energy-based damage model to further capture the effect of material softening. Previously, in VA model, it was assumed that the total activation energy for overcoming the obstacles without external work remains the same which works well in the absence of DSA. However, during DSA, the mobile dislocations are pinned by the diffusing solute atoms. This results in an increase in the total activation free energy needed by the dislocations to overcome the obstacle. Thus, an increase in strength is observed. It is shown in the current work that utilizing the concept of increased solute concentrations at local obstacles, in conjunction with the physical description that the VA model is based upon, successfully captures the phenomenon of DSA in C45 steel. In addition, the metal experiencing softening after reaching its ultimate strength is due to the significant growth of voids and cracks within the microstructure. To capture this behavior, an energy-based damage parameter is incorporated into the proposed model. The coupled plasticity-damage model shows a good comparison with the experimental results.

References

1.
Van den Beukel
,
A.
,
1975
, “
Theory of the Effect of Dynamic Strain Aging on Mechanical Properties
,”
Phys. Status Solidi (a)
,
30
(
1
), pp.
197
206
.
2.
Ghazisaeidi
,
M.
,
Hector Jr
,
L.
, and
Curtin
,
W.
,
2014
, “
Solute Strengthening of Twinning Dislocations in Mg Alloys
,”
Acta Mater.
,
80
, pp.
278
287
.
3.
Mulford
,
R.
, and
Kocks
,
U.
,
1979
, “
New Observations on the Mechanisms of Dynamic Strain Aging and of Jerky Flow
,”
Acta Metall.
,
27
(
7
), pp.
1125
1134
.
4.
De Almeida
,
L.
,
Le May
,
I.
, and
Emygdio
,
P.
,
1998
, “
Mechanistic Modeling of Dynamic Strain Aging in Austenitic Stainless Steels
,”
Mater. Charact.
,
41
(
4
), pp.
137
150
.
5.
Cheng
,
J.
, and
Nemat-Nasser
,
S.
,
2000
, “
A Model for Experimentally-Observed High-Strain-Rate Dynamic Strain Aging in Titanium
,”
Acta Mater.
,
48
(
12
), pp.
3131
3144
.
6.
Nemat-Nasser
,
S.
, and
Guo
,
W.-G.
,
2005
, “
Thermomechanical Response of HSLA-65 Steel Plates: Experiments and Modeling
,”
Mech. Mater.
,
37
(
2–3
), pp.
379
405
.
7.
Nemat-Nasser
,
S.
,
Guo
,
W.-G.
, and
Kihl
,
D. P.
,
2001
, “
Thermomechanical Response of AL-6XN Stainless Steel Over a Wide Range of Strain Rates and Temperatures
,”
J. Mech. Phys. Solids
,
49
(
8
), pp.
1823
1846
.
8.
Steinberg
,
D.
,
Cochran
,
S.
, and
Guinan
,
M.
,
1980
, “
A Constitutive Model for Metals Applicable at High-Strain Rate
,”
J. Appl. Phys.
,
51
(
3
), pp.
1498
1504
.
9.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
10.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1987
, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
,
61
(
5
), pp.
1816
1825
.
11.
Nemat-Nasser
,
S.
, and
Isaacs
,
J.
,
1997
, “
Direct Measurement of Isothermal Flow Stress of Metals at Elevated Temperatures and High Strain Rates With Application to Ta and TaW Alloys
,”
Acta Mater.
,
45
(
3
), pp.
907
919
.
12.
Voyiadjis
,
G. Z.
, and
Abed
,
F. H.
,
2005
, “
Effect of Dislocation Density Evolution on the Thermomechanical Response of Metals With Different Crystal Structures at Low and High Strain Rates and Temperatures
,”
Archiv. Mech.
,
57
(
4
), pp.
299
343
.
13.
Klepaczko
,
J. R.
,
Rusinek
,
A.
,
Rodríguez-Martínez
,
J. A.
,
Pęcherski
,
R.
, and
Arias
,
A.
,
2009
, “
Modelling of Thermo-Viscoplastic Behaviour of DH-36 and Weldox 460-E Structural Steels at Wide Ranges of Strain Rates and Temperatures, Comparison of Constitutive Relations for Impact Problems
,”
Mech. Mater.
,
41
(
5
), pp.
599
621
.
14.
Moris Devotta
,
A.
,
Sivaprasad
,
P. V.
,
Beno
,
T.
,
Eynian
,
M.
,
Hjertig
,
K.
,
Magnevall
,
M.
, and
Lundblad
,
M.
,
2019
, “
A Modified Johnson-Cook Model for Ferritic-Pearlitic Steel in Dynamic Strain Aging Regime
,”
Metals
,
9
(
5
), p.
528
.
15.
Abed
,
F. H.
,
Saffarini
,
M. H.
,
Abdul-Latif
,
A.
, and
Voyiadjis
,
G. Z.
,
2017
, “
Flow Stress and Damage Behavior of C45 Steel Over a Range of Temperatures and Loading Rates
,”
ASME J. Eng. Mater. Technol.
,
139
(
2
), p.
021012
.
16.
Nemat-Nasser
,
S.
, and
Guo
,
W.
,
2000
, “
Flow Stress of Commercially Pure Niobium Over a Broad Range of Temperatures and Strain Rates
,”
Mater. Sci. Eng. A
,
284
(
1–2
), pp.
202
210
.
17.
Nemat-Nasser
,
S.
, and
Guo
,
W.
,
2000
, “
High Strain-Rate Response of Commercially Pure Vanadium
,”
Mech. Mater.
,
32
(
4
), pp.
243
260
.
18.
Voyiadjis
,
G. Z.
,
Song
,
Y.
, and
Rusinek
,
A.
,
2019
, “
Constitutive Model for Metals With Dynamic Strain Aging
,”
Mech. Mater.
,
129
, pp.
352
360
.
19.
Voyiadjis
,
G. Z.
, and
Abed
,
F. H.
,
2005
, “
Microstructural Based Models for bcc and fcc Metals With Temperature and Strain Rate Dependency
,”
Mech. Mater.
,
37
(
2–3
), pp.
355
378
.
20.
Wang
,
J.
,
Guo
,
W.-G.
,
Gao
,
X.
, and
Su
,
J.
,
2015
, “
The Third-Type of Strain Aging and the Constitutive Modeling of a Q235B Steel Over a Wide Range of Temperatures and Strain Rates
,”
Int. J. Plast.
,
65
, pp.
85
107
.
21.
Abed
,
F.
,
Jankowiak
,
T.
, and
Rusinek
,
A.
,
2015
, “
Verification of a Thermoviscoplastic Constitutive Relation for Brass Material Using Taylor's Test
,”
ASME J. Eng. Mater. Technol.
,
137
(
4
), p.
041005
.
22.
Abed
,
F. H.
,
Ranganathan
,
S. I.
, and
Serry
,
M. A.
,
2014
, “
Constitutive Modeling of Nitrogen-Alloyed Austenitic Stainless Steel at Low and High Strain Rates and Temperatures
,”
Mech. Mater.
,
77
, pp.
142
157
.
23.
Abed
,
F. H.
, and
Voyiadjis
,
G. Z.
,
2005
, “
Plastic Deformation Modeling of AL-6XN Stainless Steel at Low and High Strain Rates and Temperatures Using a Combination of bcc and fcc Mechanisms of Metals
,”
Int. J. Plast.
,
21
(
8
), pp.
1618
1639
.
24.
Chaboche
,
J.
,
2003
, “
Thermodynamics of Local State: Overall Aspects and Micromechanics Based Constitutive Relations
,”
Tech. Mech.
,
23
(
2–4
), pp.
113
119
.
25.
Lemaitre
,
J.
, and
Dufailly
,
J.
,
1987
, “
Damage Measurements
,”
Eng. Fract. Mech.
,
28
(
5–6
), pp.
643
661
.
26.
Al-Himairee
,
R. M.
,
Abed
,
F. H.
, and
Al-Tamimi
,
A. K.
,
2011
, “Damage Evolution in Structural Steel at Different Loading Conditions,”
Key Engineering Materials
,
Trans Tech Publications
,
Switzerland
.
27.
Abed
,
F. H.
,
Al-Tamimi
,
A. K.
, and
Al-Himairee
,
R. M.
,
2012
, “
Characterization and Modeling of Ductile Damage in Structural Steel at Low and Intermediate Strain Rates
,”
J. Eng. Mech.
,
138
(
9
), pp.
1186
1194
.
28.
Bonora
,
N.
,
Gentile
,
D.
, and
Pirondi
,
A.
,
2004
, “
Identification of the Parameters of a Non-Linear Continuum Damage Mechanics Model for Ductile Failure in Metals
,”
J. Strain Anal. Eng. Des.
,
39
(
6
), pp.
639
651
.
29.
Chandrakanth
,
S.
, and
Pandey
,
P.
,
1993
, “
A New Ductile Damage Evolution Model
,”
Int. J. Fract.
,
60
(
4
), pp.
R73
R76
.
30.
Darras
,
B. M.
,
Abed
,
F. H.
,
Pervaiz
,
S.
, and
Abdu-Latif
,
A.
,
2013
, “
Analysis of Damage in 5083 Aluminum Alloy Deformed at Different Strainrates
,”
Mater. Sci. Eng. A
,
568
, pp.
143
149
.
31.
Lemaitre
,
J.
,
1984
, “
How to Use Damage Mechanics
,”
Nucl. Eng. Des.
,
80
(
2
), pp.
233
245
.
32.
Tai
,
W. H.
,
1990
, “
Plastic Damage and Ductile Fracture in Mild Steels
,”
Eng. Fract. Mech.
,
37
(
4
), pp.
853
880
.
33.
Zheng
,
M.
,
Hu
,
C.
,
Luo
,
Z.
, and
Zheng
,
X.
,
1996
, “
A Ductile Damage Model Corresponding to the Dissipation of Ductility of Metal
,”
Eng. Fract. Mech.
,
53
(
4
), pp.
653
659
.
34.
Rusinek
,
A.
, and
Klepaczko
,
J.
,
2001
, “
Shear Testing of a Sheet Steel at Wide Range of Strain Rates and a Constitutive Relation With Strain-Rate and Temperature Dependence of the Flow Stress
,”
Int. J. Plast.
,
17
(
1
), pp.
87
115
.
35.
Rusinek
,
A.
,
Rodriguez-Martinez
,
J. A.
,
Klepaczko
,
J. R.
, and
Pęcherski
,
R. B.
,
2009
, “
Analysis of Thermo-Visco-Plastic Behaviour of Six High Strength Steels
,”
Mater. Des.
,
30
(
5
), pp.
1748
1761
.
36.
Simon
,
P.
,
Demarty
,
Y.
,
Rusinek
,
A.
, and
Voyiadjis
,
G. Z.
,
2018
, “
Material Behavior Description for a Large Range of Strain Rates From Low to High Temperatures: Application to High Strength Steel
,”
Metals
,
8
(
10
), p.
795
.
37.
Szala
,
G.
, and
Ligaj
,
B.
,
2016
, “
Application of Hybrid Method in Calculation of Fatigue Life for C45 Steel (1045 Steel) Structural Components
,”
Int. J. Fatigue
,
91
, pp.
39
49
.
38.
Rigon
,
D.
,
Berto
,
F.
, and
Meneghetti
,
G.
,
2021
, “
Estimating the Multiaxial Fatigue Behaviour of C45 Steel Specimens by Using the Energy Dissipation
,”
Int. J. Fatigue
,
151
, p.
106381
.
39.
Opěla
,
P.
,
Schindler
,
I.
,
Kawulok
,
P.
,
Vančura
,
F.
,
Kawulok
,
R.
,
Rusz
,
S.
, and
Petrek
,
T.
,
2015
, “
Hot Flow Stress Models of the Steel C45
,”
Metalurgija
,
54
(
3
), pp.
469
472
.
40.
Stembalski
,
M.
,
Preś
,
P.
, and
Skoczyński
,
W.
,
2013
, “
Determination of the Friction Coefficient as a Function of Sliding Speed and Normal Pressure for Steel C45 and Steel 40HM
,”
Archiv. Civil Mech. Eng.
,
13
(
4
), pp.
444
448
.
41.
Genna
,
S.
,
Leone
,
C.
,
Lopresto
,
V.
,
Santo
,
L.
, and
Trovalusci
,
F.
,
2010
, “
Study of Fibre Laser Machining of C45 Steel: Influence of Process Parameters on Material Removal Rate and Roughness
,”
Int. J. Mater. Form.
,
3
(
1
), pp.
1115
1118
.
42.
Padgurskas
,
J.
,
Kreivaitis
,
R.
,
Rukuiža
,
R.
,
Mihailov
,
V.
,
Agafii
,
V.
,
Kriūkienė
,
R.
, and
Baltušnikas
,
A.
,
2017
, “
Tribological Properties of Coatings Obtained by Electro-Spark Alloying C45 Steel Surfaces
,”
Surf. Coat. Technol.
,
311
, pp.
90
97
.
43.
Szkodo
,
M.
,
2005
, “
Relationship Between Microstructure of Laser Alloyed C45 Steel and Its Cavitation Resistance
,”
J. Mater. Process. Technol.
,
162
, pp.
410
415
.
44.
Magnabosco
,
I.
,
Ferro
,
P.
,
Tiziani
,
A.
, and
Bonollo
,
F.
,
2006
, “
Induction Heat Treatment of a ISO C45 Steel Bar: Experimental and Numerical Analysis
,”
Comput. Mater. Sci.
,
35
(
2
), pp.
98
106
.
45.
Ranc
,
N.
,
Favier
,
V.
,
Munier
,
B.
,
Vales
,
F.
,
Thoquenne
,
G.
, and
Lefebvre
,
F.
,
2015
, “
Thermal Response of C45 Steel in High and Very High Cycle Fatigue
,”
Proc. Eng.
,
133
, pp.
265
271
.
46.
Tabei
,
A.
,
Abed
,
F.
,
Voyiadjis
,
G.
, and
Garmestani
,
H.
,
2017
, “
Constitutive Modeling of Ti-6Al-4V at a Wide Range of Temperatures and Strain Rates
,”
Eur. J. Mech.-A/Solids
,
63
, pp.
128
135
.
47.
Kubin
,
L.
, and
Estrin
,
Y.
,
1990
, “
Evolution of Dislocation Densities and the Critical Conditions for the Portevin-Le Chatelier Effect
,”
Acta Metall. Mater.
,
38
(
5
), pp.
697
708
.
You do not currently have access to this content.