Graphical Abstract Figure

Generation of beneficial residual stresses around a hole in a plate using the method of thermal autofrettage and its impact on load carrying capacity

Graphical Abstract Figure

Generation of beneficial residual stresses around a hole in a plate using the method of thermal autofrettage and its impact on load carrying capacity

Close modal

Abstract

This article presents an investigation of the reinforcement of lughole structures, particularly a hole in an infinite (very large) plate widely employed across aerospace, automobile, and marine industries. The study focuses on augmenting the load-carrying capacity of these structures by inducing the compressive residual stresses surrounding the holes by using the method of thermal autofrettage. A thermo-mechanically coupled temperature displacement finite element approach implemented in abaqus is used to capture the effects of plastically deforming autofrettage temperature gradients on the mechanical response in the vicinity of the hole. The plasticity is incorporated using the von Mises yield criterion to capture the yielding and plastic deformation behavior of the material in the vicinity of the hole in the plate under plane stress conditions. The residual stresses upon the removal of the temperature gradients are analyzed and the corresponding load-carrying capacity is assessed. It is found that the residual stress induced by thermal autofrettage around the hole in the plate can drastically reduce the total resultant tensile stress in the vicinity of the hole when loaded in axial tension as well as in pin loading. For instance, the maximum net axial tensile stress induced at the autofrettaged hole surface due to a far-field applied axial tensile stress of 18 MPa is only 5 MPa, which is significantly lesser as compared to 53.5 MPa induced in the corresponding non-autofrettaged hole for the same far-field applied stress.

References

1.
Fu
,
Y.
,
Ge
,
E.
,
Su
,
H.
,
Xu
,
J.
, and
Li
,
R.
,
2015
, “
Cold Expansion Technology of Connection Holes in Aircraft Structures: A Review and Prospect
,”
Chin. J. Aeronaut.
,
28
(
4
), pp.
961
973
.
2.
Özdemir
,
A. T.
, and
Edwards
,
L.
,
2004
, “
Through-Thickness Residual Stress Distribution After the Cold Expansion of Fastener Holes and Its Effect on Fracturing
,”
ASME J. Eng. Mater. Technol.
,
126
(
1
), pp.
129
135
.
3.
Gopalakrishna
,
H. D.
,
Narasimha Murthy
,
H. N.
,
Krishna
,
M.
,
Vinod
,
M. S.
, and
Suresh
,
A. V.
,
2010
, “
Cold Expansion of Holes and Resulting Fatigue Life Enhancement and Residual Stresses in Al 2024 T3 Alloy—An Experimental Study
,”
Eng. Fail. Anal.
,
17
(
2
), pp.
361
368
.
4.
Pavier
,
M. J.
,
Poussard
,
C. G. C.
, and
Smith
,
D. J.
,
1998
, “
Finite Element Modelling of the Interaction of Residual Stress With Mechanical Load for a Crack Emanating From a Cold Worked Fastener Hole
,”
J. Strain Anal. Eng. Des.
,
33
(
4
), pp.
275
289
.
5.
Ismonov
,
S.
,
Daniewicz
,
S. R.
,
Newman
,
J. C.
,
Hill
,
M. R.
, and
Urban
,
M. R.
,
2009
, “
Three Dimensional Finite Element Analysis of a Split-Sleeve Cold Expansion Process
,”
ASME J. Eng. Mater. Technol.
,
131
(
3
), p.
031007
.
6.
Kim
,
C.
,
Kim
,
D. J.
,
Seok
,
C. S.
, and
Yang
,
W. H.
,
2004
, “
Finite Element Analysis of the Residual Stress by Cold Expansion Method Under the Influence of Adjacent Holes
,”
J. Mater. Process. Technol.
,
153–154
(
1–3
), pp.
986
991
.
7.
De Matos
,
P. F. P.
,
Moreira
,
P. M. G. P.
,
Camanho
,
P. P.
, and
De Castro
,
P. M. S. T.
,
2005
, “
Numerical Simulation of Cold Working of Rivet Holes
,”
Finite Elem. Anal. Des.
,
41
(
9–10
), pp.
989
1007
.
8.
Nigrelli
,
V.
, and
Pasta
,
S.
,
2008
, “
Finite-Element Simulation of Residual Stress Induced by Split-Sleeve Cold-Expansion Process of Holes
,”
J. Mater. Process. Technol.
,
205
(
1–3
), pp.
290
296
.
9.
Sun
,
Y.
,
Voyiadjis
,
G. Z.
,
Hu
,
W.
,
Meng
,
Q.
, and
Xu
,
Y.
,
2017
, “
Fatigue Damage Analysis of Double-Lap Bolted Joints Considering the Effects of Hole Cold Expansion and Bolt Clamping Force
,”
ASME J. Eng. Mater. Technol.
,
139
(
2
), p.
021007
.
10.
Ribeiro
,
R. L.
, and
Hill
,
M. R.
,
2017
, “
Residual Stress From Cold Expansion of Fastener Holes: Measurement, Eigenstrain, and Process Finite Element Modeling
,”
ASME J. Eng. Mater. Technol.
,
139
(
4
), p.
041012
.
11.
Lv
,
Y.
,
Dong
,
M.
,
Zhang
,
T.
,
Wang
,
C.
,
Hou
,
B.
, and
Li
,
C.
,
2023
, “
Finite Element Analysis of Split Sleeve Cold Expansion Process on Multiple Hole Aluminum Alloy
,”
Materials
,
16
(
3
), p.
1109
.
12.
Özdemir
,
A. T.
, and
Edwards
,
L.
,
1996
, “
Measurement of the Three-Dimensional Residual Stress Distribution Around Split-Sleeve Cold-Expanded Holes
,”
J. Strain Anal. Eng. Des.
,
31
(
6
), pp.
413
421
.
13.
Smith
,
D. J.
,
Poussard
,
C. G. C.
, and
Pavier
,
M. J.
,
1998
, “
An Assessment of the Sachs Method for Measuring Residual Stresses in Cold Worked Fastener Holes
,”
J. Strain Anal. Eng. Des.
,
33
(
4
), pp.
263
274
.
14.
Stefanescu
,
D.
,
Santisteban
,
J. R.
,
Edwards
,
L.
, and
Fitzpatrick
,
M. E.
,
2004
, “
Residual Stress Measurement and Fatigue Crack Growth Prediction After Cold Expansion of Cracked Fastener Holes
,”
J. Aerosp. Eng.
,
17
(
3
), pp.
91
97
.
15.
Seifi
,
R.
,
Zolfaghari
,
M. H.
, and
Shirazi
,
A.
,
2014
, “
Experimental and Numerical Study of Residual Stresses Caused by Cold Expansion of Adjacent Holes
,”
Meccanica
,
49
(
3
), pp.
687
706
.
16.
Jones
,
K. W.
, and
Bush
,
R. W.
,
2017
, “
Investigation of Residual Stress Relaxation in Cold Expanded Holes by the Slitting Method
,”
Eng. Fract. Mech.
,
179
, pp.
213
224
.
17.
Toparli
,
M.
,
Özel
,
A.
, and
Aksoy
,
T.
,
1997
, “
Effect of the Residual Stresses on the Fatigue Crack Growth Behavior at Fastener Holes
,”
Mater. Sci. Eng. A
,
225
(
1–2
), pp.
196
203
.
18.
Jang
,
J.-S.
,
Kim
,
D.
, and
Cho
,
M.-R.
,
2008
, “
The Effect of Cold Expansion on the Fatigue Life of the Chamfered Holes
,”
ASME J. Eng. Mater. Technol.
,
130
(
3
), p.
031014
.
19.
Wanlin
,
G.
,
1993
, “
Elastic–Plastic Analysis of a Finite Sheet With a Coldworked Hole
,”
Eng. Fract. Mech.
,
46
(
3
), pp.
465
472
.
20.
Dutta
,
N.
, and
Rasty
,
J.
,
2010
, “
Prediction of Elastic-Plastic Boundary Around Cold-Expanded Holes Using Elastic Strain Measurement
,”
ASME J. Eng. Mater. Technol.
,
132
(
3
), p.
031009
.
21.
Chen
,
Y.
, and
Hills
,
D. A.
,
2023
, “
Shakedown of a Plate With a Circular Hole: An Educational Problem
,”
J. Strain Anal. Eng. Des.
,
58
(
8
), pp.
684
694
.
22.
Fu
,
J.
,
Zhang
,
T.
,
Wang
,
C.
,
Chen
,
C.
,
Zhang
,
T.
, and
He
,
Y.
,
2024
, “
Effect of Cold Expansion on the Fatigue Life of Multi-hole 7075-T6 Aluminum Alloy Structures Under the Pre-Corrosion Condition
,”
Eng. Fail. Anal.
,
165
, p.
108812
.
23.
Rees
,
D. W. A.
,
2011
, “
A Theory for Swaging of Discs and Lugs
,”
Meccanica
,
46
(
6
), pp.
1213
1237
.
24.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2016
, “
A Comparative Study of Thermal and Hydraulic Autofrettage
,”
J. Mech. Sci. Technol.
,
30
(
6
), pp.
2483
2496
.
25.
Shufen
,
R.
, and
Dixit
,
U. S.
,
2018
, “
A Review of Theoretical and Experimental Research on Various Autofrettage Processes
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
050802
.
26.
Shim
,
W. S.
,
Kim
,
J. H.
,
Lee
,
Y. S.
,
Cha
,
K. U.
, and
Hong
,
S. K.
,
2010
, “
A Study on Hydraulic Autofrettage of Thick-Walled Cylinders Incorporating Bauschinger Effect
,”
Exp. Mech.
,
50
(
5
), pp.
621
626
.
27.
Çandar
,
H.
, and
Filiz
,
H.
,
2017
, “
Experimental Study on Residual Stresses in Autofrettaged Thick-Walled High-Pressure Cylinders
,”
High Pressure Res.
,
37
(
4
), pp.
516
528
.
28.
Davidson
,
T. E.
,
Barton
,
C. S.
,
Reiner
,
A. N.
, and
Kendall
,
D. P.
,
1962
, “
New Approach to the Autofrettage of High-Strength Cylinders
,”
Exp. Mech.
,
2
(
2
), pp.
33
40
.
29.
Hu
,
Z.
,
Gibson
,
M. C.
, and
Parker
,
A. P.
,
2021
, “
Swage Autofrettage FEA Incorporating a User Function to Model Actual Bauschinger Effect
,”
Int. J. Pressure Vessel. Pip.
,
191
, p.
104372
.
30.
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2015
, “
Feasibility Study of Thermal Autofrettage of Thick-Walled Cylinders
,”
ASME J. Pressure Vessel Technol.
,
137
(
6
), p.
061207
.
31.
Kamal
,
S. M.
,
Borsaikia
,
A. C.
, and
Dixit
,
U. S.
,
2016
, “
Experimental Assessment of Residual Stresses Induced by the Thermal Autofrettage of Thick-Walled Cylinders
,”
J. Strain Anal. Eng. Des.
,
51
(
2
), pp.
144
160
.
32.
Rajput
,
M.
,
Kamal
,
S. M.
, and
Patil
,
R. U.
,
2024
, “
Analysis of Residual Stress Field in Strain-Hardened Hollow Circular Discs Subjected to Autofrettage by Radial Temperature Difference
,”
Math. Mech. Solids.
33.
Zare
,
H. R.
, and
Darijani
,
H.
,
2016
, “
A Novel Autofrettage Method for Strengthening and Design of Thick-Walled Cylinders
,”
Mater. Des.
,
105
, pp.
366
374
.
34.
Kamal
,
S. M.
,
2018
, “
Analysis of Residual Stress in the Rotational Autofrettage of Thick-Walled Disks
,”
ASME J. Pressure Vessel Technol.
,
140
(
6
), p.
050602
.
35.
Aziz
,
F.
,
Kamal
,
S. M.
, and
Dixit
,
U. S.
,
2024
, “
Enhancing Fatigue Life of Thick-Walled Cylinders Through a Hybrid Rotational-Swage Autofrettage-Induced Residual Stresses
,”
J. Mater. Eng. Perform.
,
33
(
8
), pp.
3939
3956
.
36.
Berneder
,
J.
,
Prillhofer
,
R.
,
Schulz
,
P.
, and
Melzer
,
C.
,
2012
, “Characterization of Pre-Aged AA6061-T6 Sheet Material for Aerospace Applications,”
ICAA13 Pittsburgh
,
H.
Weiland
,
A. D.
Rollett
, and
W. A.
Cassada
, eds.,
Springer
,
Cham, Switzerland
.
37.
Li
,
S.-S.
,
Yue
,
X.
,
Li
,
Q.-Y.
,
Peng
,
H.-L.
,
Dong
,
B.-X.
,
Liu
,
T.-S.
,
Yang
,
H.-Y.
, et al
,
2023
, “
Development and Applications of Aluminum Alloys for Aerospace Industry
,”
J. Mater. Res. Technol.
,
27
, pp.
944
983
.
38.
Ozturk
,
F.
,
Sisman
,
A.
,
Toros
,
S.
,
Kilic
,
S.
, and
Picu
,
R. C.
,
2010
, “
Influence of Aging Treatment on Mechanical Properties of 6061 Aluminum Alloy
,”
Mater. Des.
,
31
(
2
), pp.
972
975
.
39.
Fooladfar
,
H.
,
Hashemi
,
B.
, and
Younesi
,
M.
,
2010
, “
The Effect of the Surface Treating and High-Temperature Aging on the Strength and SCC Susceptibility of 7075 Aluminum Alloy
,”
J. Mater. Eng. Perform.
,
19
, pp.
852
859
.
40.
Jin
,
M.
,
Lee
,
B.
,
Yoo
,
J.
,
Jo
,
Y.
, and
Lee
,
S.
,
2024
, “
Cryogenic Deformation Behaviour of Aluminium Alloy 6061-T6
,”
Met. Mater. Int.
,
30
(
6
), pp.
1492
1504
.
41.
Feng
,
B.
,
Gu
,
B.
, and
Li
,
S.
,
2022
, “
Cryogenic Deformation Behavior and Failure Mechanism of AA7075 Alloy Sheets Tempered at Different Conditions
,”
Mater. Sci. Eng. A
,
848
, p.
143396
.
You do not currently have access to this content.