Graphical Abstract Figure

An overview of FCGR-Net

Graphical Abstract Figure

An overview of FCGR-Net

Close modal

Abstract

Accurate prediction of fatigue crack growth rate (FCGR) behavior in structural alloys using numerical methods is still proven to be challenging due to the complexity of mechanisms involved. One other option is to make use of the state-of-the-art research involving machine learning (ML) for predictions. ML-based artificial intelligence (AI) is evolving as an alternate approach towards automation with higher levels of accuracy across diverse disciplines. As ML demands huge data, an attempt is made to create a database involving material composition, tensile properties, temperature, stress ratio, and corresponding FCGR information. The dataset covers a wide gamut of structural alloys such as steel-, aluminum-, and nickel-based superalloys. The ML model trained over this experimental dataset was used to predict the FCGR in a structural alloy and is the novelty of the work. The methodology involves formulation of deep neural network architecture, herewith termed as FCGR-Net model, for the prediction of fatigue crack growth (FCG) behavior. FCGR-Net predictions show good correlation with the experimental values available in the literature. This study would significantly contribute toward early prediction and minimizing experimentation without compromising the accuracy of prediction.

References

1.
Shackelford
,
J. F.
,
2000
,
Introduction to Materials Science for Engineers
, 8th ed.,
Pearson Education, Inc.
,
Upper Saddle River, NJ
.
2.
Van Vlack
,
L. H.
,
1989
,
Elements of Materials Science and Engineering, Chapters 1–3
,
Addison-Wesley Publ. Co.
,
Reading, MA
.
3.
Ashby
,
M. F.
, and
Jones
,
D. R. H.
,
2012
,
Engineering Materials 1: An Introduction to Properties, Applications and Design
, Vol.
1
,
Elsevier
,
Oxford, UK
.
4.
Staron
,
P.
,
Schreyer
,
A.
,
Clemens
,
H.
, and
Mayer
,
S.
,
2017
,
Neutrons and Synchrotron Radiation in Engineering Materials Science
, 2nd ed.,
Wiley-VCH
,
Weihheim, Germany
.
5.
Malipatil
,
S. G.
,
Majila
,
A. N.
,
Fernando
,
D. C.
,
Manjuprasad
,
M.
, and
Manjunatha
,
C.
,
2021
, “
Fatigue Crack Growth Behaviour of a Nickel Base Super Alloy GTM720 Under Cold-Turbistan Spectrum Load Sequence
,”
Theor. Appl. Fract. Mec.
,
112
(
2
), p.
102913
.
6.
Malipatil
,
S. G.
,
Majila
,
A. N.
,
Fernando
,
D. C.
,
Manjuprasad
,
M.
, and
Manjunatha
,
C.
,
2021
, “
Damage Tolerance Behavior of a Nickel-Based Super-Alloy GTM718 Under Cold-Turbistan Variable Amplitude Loads
,”
Trans. Indian Inst. Met.
,
74
(
4
), pp.
901
907
.
7.
Beden
,
S.
,
Abdullah
,
S.
,
Ariffin
,
A.
, and
Al-Asady
,
N.
,
2010
, “
Fatigue Crack Growth Simulation of Aluminium Alloy Under Spectrum Loadings
,”
Mater. Des.
,
31
(
7
), pp.
3449
3456
.
8.
Boyer
,
H. E.
,
1985
,
Atlas of Fatigue Curves
,
ASM International
,
Materials Park, OH
.
9.
James
,
L.
,
1977
, Effect of Temperature Upon the Fatigue-Crack Propagation Behavior of Inconel 625, Hanford Engineering Development Lab., Richland, WA
10.
Anderson
,
T. L.
,
2005
,
Fracture Mechanics: Fundamentals and Applications
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
11.
Broek
,
D.
,
2012
,
Elementary Engineering Fracture Mechanics
, 4th ed.,
Springer Science & Business Media
,
New Delhi, India
.
12.
Duda
,
R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
,
2021
,
Pattern Recognition
, 2nd ed.,
Wiley India Pvt. Ltd.
,
New Delhi, India
.
13.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
14.
Géron
,
A.
,
2022
,
Hands-On Machine Learning With Scikit-Learn, Keras, and TensorFlow
, Third Edition ed.,
O’Reilly Media, Inc.
,
Sebastopol, CA
.
15.
Starmer
,
J.
,
2022
,
The StatQuest Illustrated Guide to Machine Learning!!!
,
StatQuest
,
United States
.
16.
Mitchell
,
T. M.
,
1997
,
Machine Learning
, Vol.
1
,
McGraw-Hill
,
New York
.
17.
Skansi
,
S.
,
2018
,
Introduction to Deep Learning: From Logical Calculus to Artificial Intelligence
,
Springer
,
Cham, Switzerland
.
18.
Patterson
,
J.
, and
Gibson
,
A.
,
2017
,
Deep Learning: A Practitioner’s Approach
, First Edition ed.,
O’Reilly Media, Inc.
,
Sebastopol, CA
.
19.
Karina
,
C.
,
Chun
,
P.
, and
Okubo
,
K.
,
2017
, “
Tensile Strength Prediction of Corroded Steel Plates by Using Machine Learning Approach
,”
Steel Compos. Struct.
,
24
(
5
), pp.
635
641
.
20.
Sun
,
Y.
,
Hanhan
,
I.
,
Sangid
,
M. D.
, and
Lin
,
G.
,
2020
, “Predicting Mechanical Properties from Microstructure Images in Fiber-Reinforced Polymers Using Convolutional Neural Networks,” arxiv:2010.03675.
21.
Kwak
,
S.
,
Kim
,
J.
,
Ding
,
H.
,
Xu
,
X.
,
Chen
,
R.
,
Guo
,
J.
, and
Fu
,
H.
,
2022
, “
Machine Learning Prediction of the Mechanical Properties of γ-TiAl Alloys Produced Using Random Forest Regression Model
,”
J. Mater. Res. Technol.
,
18
(
3
), pp.
520
530
.
22.
Chen
,
S.
,
Shiina
,
R.
,
Nakai
,
K.
,
Awano
,
T.
,
Yoshinaga
,
A.
, and
Sugiyama
,
J.
,
2023
, “
Potential of Machine Learning Approaches for Predicting Mechanical Properties of Spruce Wood in the Transverse Direction
,”
J. Wood Sci.
,
69
(
1
), p.
22
.
23.
Mahesh
,
S.
,
Anil Chandra
,
A. R.
,
Ravi Kumar
,
L.
, and
Manjunatha
,
C. M.
,
2024
, “
Prediction of Tensile Properties From Micro-Structure in Metallic Alloys Using Machine Learning
,”
2024 International Conference on Emerging Technologies in Computer Science for Interdisciplinary Applications (ICETCS)
,
Bengaluru, India
,
Apr. 25–30
, pp.
1
6
.
24.
Mohanty
,
J.
,
Verma
,
B.
,
Parhi
,
D.
, and
Ray
,
P.
,
2009
, “
Application of Artificial Neural Network for Predicting Fatigue Crack Propagation Life of Aluminum Alloys
,”
Comput. Mater. Sci. Surf. Eng.
,
1
(
3
), pp.
133
138
. http://hdl.handle.net/2080/923
25.
Raja
,
A.
,
Chukka
,
S. T.
, and
Jayaganthan
,
R.
,
2020
, “
Prediction of Fatigue Crack Growth Behaviour in Ultrafine Grained Al 2014 Alloy Using Machine Learning
,”
Metals
,
10
(
10
), p.
1349
.
26.
Li
,
M.
, and
Li
,
L. D.
,
2020
, “
A Novel Method of Curve Fitting Based on Optimized Extreme Learning Machine
,”
Appl. Artif. Intell.
,
34
(
12
), pp.
849
865
.
27.
Wang
,
H.
,
Zhang
,
W.
,
Sun
,
F.
, and
Zhang
,
W.
,
2017
, “
A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation
,”
Materials
,
10
(
5
), p.
543
.
28.
Zhang
,
L.
,
Wang
,
Z.
,
Wang
,
L.
,
Zhang
,
Z.
,
Chen
,
X.
, and
Meng
,
L.
,
2021
, “
Machine Learning-Based Real-Time Visible Fatigue Crack Growth Detection
,”
Digital Commun. Netw.
,
7
(
4
), pp.
551
558
.
29.
Mahesh
,
S.
,
Anil Chandra
,
A. R.
,
Ravi Kumar
,
L.
, and
Manjunatha
,
C. M.
,
2024
, “
Fatigue Crack Growth Rate Prediction in Nickle Based Super-Alloys Using Machine Learning Algorithm
,”
Procedia Struct. Integrity
,
60
(
9
), pp.
382
389
.
30.
Freed
,
Y.
,
2024
, “
Machine Learning-Based Predictions of Crack Growth Rates in An Aeronautical Aluminum Alloy
,”
Theor. Appl. Fract. Mech.
,
130
(
2
), p.
104278
.
31.
Zhou
,
S.
,
Yang
,
B.
,
Xiao
,
S.
,
Yang
,
G.
, and
Zhu
,
T.
,
2024
, “
Interpretable Machine Learning Method for Modelling Fatigue Short Crack Growth Behaviour
,”
Metals Mater. Int.
,
30
(
7
), pp.
1944
1964
.
32.
Santos
,
B.
,
Infante
,
V.
,
Barros
,
T.
, and
Baptista
,
R.
,
2024
, “
Study of Fatigue Crack Propagation on Modified CT Specimens Under Variable Amplitude Loadings Using Machine Learning
,”
Int. J. Fatigue
,
184
(
7
), p.
108332
.
33.
Sun
,
L.
, and
Huang
,
X.
,
2024
, “
Prediction of Fatigue Crack Propagation Lives Based on Machine Learning and Data-Driven Approach
,”
J. Ocean Eng. Sci.
,
9
(
6
), pp.
592
604
.
34.
ASTM
,
2016
, “
Standard Test Method for Measurement of Fatigue Crack Growth Rates
,”
E647
.
35.
Tzamtzis
,
A.
, and
Kermanidis
,
A.
,
2014
, “
Improvement of Fatigue Crack Growth Resistance by Controlled Overaging in 2024-T3 Aluminium Alloy
,”
Fatigue Fract. Eng. Mater. Struct.
,
37
(
7
), pp.
751
763
.
36.
MatWeb
, and
ASM Inc.
, “
Aluminum 7075-T6
,”
ASM Material Data Sheet References
, https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA7075T6, Accessed September 13, 2024.
37.
MakeItFrom.com
, “
Aluminum 2024-T351
,”
Aluminum Alloy
, https://www.makeitfrom.com/material-properties/2024-T351-Aluminum, Accessed September 13, 2024.
38.
MatWeb
, “
Steel D6AC
,”
The Online Materials Information Resource
, https://www.matweb.com/search/DataSheet.aspx?MatGUID=f8ec402aadf142b192f7c0f3915b5096&ckck=1, Accessed September 13, 2024.
39.
MatWeb
, “
Steel 4340
,”
The Online Materials Information Resource
. https://www.matweb.com/search/DataSheet.aspx?MatGUID=fd2df45bffa54018b54989bc14092d9f, Accessed September 13, 2024.
40.
MatWeb
, “
Al 2524
,”
The Online Materials Information Resource
, https://www.matweb.com/search/DataSheet.aspx, Accessed September 13, 2024.
41.
MatWeb
, “
Steel A533B1
,”
The Online Materials Information Resource
, https://www.matweb.com/search/DataSheet, Accessed September 13, 2024.
42.
Stonesifer
,
F.
,
1978
, “
Effect of Grain Size and Temperature on Fatigue Crack Propagation in A533 B Steel
,”
Eng. Fract. Mech.
,
10
(
2
), pp.
305
314
.
43.
Nakamura
,
H.
,
Minakawa
,
K.
,
Murali
,
K.
, and
Mc Evily
,
A.
,
1987
, “
Fatigue Crack Growth in Ferritic Steels as Influence by Elevated Temperature and Environment
,”
Latin American Colloquium on Technological Developments in Failure Analysis
,
Buenos Aires, Argentina
,
Oct. 19–23
, pp.
15
35
. https://inis.iaea.org/records/2gfr8-8n596
44.
Kowathanakul
,
N.
,
Yu
,
Q.
,
Zhu
,
C.
,
Li
,
X.
,
Minor
,
A. M.
, and
Ritchie
,
R. O.
,
2022
, “
Fatigue-Crack Propagation Behavior in a High-Carbon Chromium SUJ2 Bearing Steel: Role of Microstructure
,”
Int. J. Fatigue
,
156
(
3
), p.
106693
.
45.
MatWeb
, “
UDIMET 720
,”
The Online Materials Information Resource
, https://www.matweb.com/search/DataSheet, Accessed September 13, 2024.
46.
Sadananda
,
K.
, and
Shahinian
,
P.
,
1979
, “
A Fracture Mechanics Approach to High Temperature Fatigue Crack Growth in UDIMET 700
,”
Eng. Fract. Mech.
,
11
(
1
), pp.
73
86
.
47.
MatWeb
, “
Steel 304
,”
The Online Materials Information Resource
, https://www.matweb.com/search/DataSheet.aspx?MatGUID=abc4415b0f8b490387e3c922237098da, Accessed September 13, 2024.
48.
Ritchie
,
R. O.
,
1977
, “
Influence of Microstructure on Near-Threshold Fatigue-Crack Propagation in Ultra-High Strength Steel
,”
Metal Sci.
,
11
(
8–9
), pp.
368
381
.
49.
Ritchie
,
R. O.
,
1977
, “
Near-Threshold Fatigue Crack Propagation in Ultra-High Strength Steel: Influence of Load Ratio and Cyclic Strength
,”
J. Eng. Mater. Technol.
,
99
(
3
), pp.
195
204
.
50.
MetalsUSA
, “
HSLA 80 High Strength Low Alloy Plates
,”
METAL GRADES
,
Accessed September 13, 2024.
https://www.metalsusa.com/hsla80-grade-steel/
51.
MatWeb
, “
AISI 4340
,”
The Online Materials Information Resource
, https://www.matweb.com/search/DataSheet.aspx, Accessed September 13, 2024.
52.
Gill
,
S.
, and
Crooker
,
T.
,
1990
, “
Fatigue Crack Propagation in An HSLA Steel (MF-80) in Air and in Salt Water
,”
Mar. Technol. SNAME News
,
27
(
04
), pp.
221
224
.
53.
Lindigkeit
,
J.
,
Terlinde
,
G.
,
Gysler
,
A.
, and
Lütjering
,
G.
,
1979
, “
The Effect of Grain Size on the Fatigue Crack Propagation Behavior of Age-Hardened Alloys in Inert and corrosive Environment
,”
Acta Metall.
,
27
(
11
), pp.
1717
1726
.
54.
Svoboda
,
J.
,
1982
, “
Fatigue and Fracture Toughness of Five Carbon or Low Alloy Cast Steels at Room or Low Climate Temperature
,”
Carbon and Low Alloy Steel Technical Research Committee Steel Founders’ Society of America
.
55.
Marrow
,
T.
, and
King
,
J.
,
1994
, “
Fatigue Crack Propagation Mechanisms in a Thermally Aged Duplex Stainless Steel
,”
Mater. Sci. Eng. A
,
183
(
1–2
), pp.
91
101
.
56.
Laboratories ALCOA
,
1976
,
Effects of Microstructure on Fatigue Crack Growth of High-Strength Aluminum Alloys
,
Aluminum Company of America
,
Wright-Patterson Air Force Base, OH
.
57.
Forth
,
S. C.
,
Wright
,
C. W.
, and
Johnston Jr.
,
W. M.
,
2005
,
7075-T6 AND 2024-T351 Aluminum Alloy Fatigue Crack Growth Rate Data
,
National Aeronautics and Space Administration
,
Hampton, VA
.
58.
Forth
,
S. C.
,
James
,
M. A.
,
Newman
,
J. A.
,
Everett Jr.
,
R. A.
, and
Johnston Jr.
,
W. M.
,
2004
,
Mechanical Data for Use in Damage Tolerance Analyses
,
National Aeronautics and Space Administration
,
Hampton, VA
.
59.
Tesch
,
A.
,
Pippan
,
R.
, and
Döker
,
H.
,
2007
, “
New Testing Procedure to Determine da/dn–ΔK Curves At Different, Constant R-Values Using One Single Specimen
,”
Int. J. Fatigue
,
29
(
7
), pp.
1220
1228
.
60.
Gao
,
Y.
,
Ritchie
,
R.
,
Kumar
,
M.
, and
Nalla
,
R.
,
2005
, “
High-Cycle Fatigue of Nickel-Based Superalloy ME3 at Ambient and Elevated Temperatures: Role of Grain-Boundary engineering
,”
Metall. Mater. Trans. A
,
36
(
12
), pp.
3325
3333
.
61.
Lampman
,
S.
,
1996
,
Fatigue and Fracture
, Vol.
19
,
ASM International
,
OH
.
62.
Chan
,
K. S.
,
Pan
,
Y.-M.
,
Davidson
,
D.
, and
McClung
,
R. C.
,
1997
, “
Fatigue Crack Growth Mechanisms in HSLA-80 Steels
,”
Mater. Sci. Eng. A
,
222
(
1
), pp.
1
8
.
63.
Shahinian
,
P.
,
1978
, “
Fatigue Crack Growth Characteristics of High-Temperature Alloys
,”
Metals Technol.
,
5
(
1
), pp.
372
380
.
64.
James
,
Lee A.
,
1990
,
The Effect of Temperature Upon the Fatigue Crack Propagation Behavior of Alloy 625
,
Westinghouse Electric Corp
,
West Mifflin, PA
.
65.
James
,
L.
,
1976
,
Fatigue-Crack Propagation Behavior of Inconel 600
,
Hanford Engineering Development Lab.
,
Richland, WA (United States)
.
66.
James
,
L. A.
,
1976
,
Effect of Temperature Upon the Fatigue-Crack Propagation Behavior of Hastelloy X-280
,
Hanford Engineering Development Lab
,
Springfield, VA
.
67.
Makhlouf
,
K.
, and
Jones
,
J. W.
,
1993
, “
Effects of Temperature and Frequency on Fatigue Crack Growth in 18% Cr Ferritic Stainless Steel
,”
Int. J. Fatigue
,
15
(
3
), pp.
163
171
.
68.
Rackwitz
,
J.
,
Yu
,
Q.
,
Yang
,
Y.
,
Laplanche
,
G.
,
George
,
E. P.
,
Minor
,
A. M.
, and
Ritchie
,
R. O.
,
2020
, “
Effects of Cryogenic Temperature and Grain Size on Fatigue-Crack Propagation in the Medium-Entropy CrCoNi Alloy
,”
Acta Mater.
,
200
(
19
), pp.
351
365
.
69.
ASTM
,
2012
, “
Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service
,”
A216/A216M − 12
.
70.
Clark
,
W. G.
, Jr.
, and
Hudak
,
S. J.
, Jr.
,
1975
, “
Variability in Fatigue Crack Growth Rate Testing
,”
J. Test. Evaluat.
,
3
(
6
), pp.
454
476
.
71.
Scikit Learn
, and
sklearn Pre-processing
,
StandardScaler
, https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html, Accessed September 13, 2024.
72.
TensorFlow
, “
Normalization
,”
TensorFlow v2.16.1, Python
, https://www.tensorflow.org/api_docs/python/tf/keras/layers/Normalization, Accessed September 13, 2024.
73.
TensorFlow
, “
TensorFlow
,”
TensorFlow
, https://www.tensorflow.org/, Accessed September 13, 2024.
74.
Keras
, “
Keras
,”
Keras
. https://keras.io/, Accessed September 13, 2024.
75.
Nandana
,
M. S.
,
Udaya Bhat
,
K.
, and
Manjunatha
,
C. M.
,
2019
, “
Improved Fatigue Crack Growth Resistance by Retrogression and Re-Aging Heat Treatment in 7010 Aluminum Alloy
,”
Fatigue Fract. Eng. Mater. Struct.
,
42
(
3
), pp.
719
731
.
76.
Thapar
,
K.
, “
What is Cross-Validation in Machine Learning?
Machine Learning
. https://www.pickl.ai/blog/cross-validation-in-machine-learning/, Accessed March 2, 2005.
77.
Matuszyk
,
T. I.
,
Cardew-Hall
,
M. J.
, and
Rolfe
,
B. F.
,
2010
, “
The Kernel Density Estimate/Point Distribution Model (KDE-PDM) for Statistical Shape Modeling of Automotive Stampings and Assemblies
,”
Rob. Comput.-Integrated Manuf.
,
26
(
4
), pp.
370
380
.
78.
Seaborn
, “
Seaborn Heatmap
,”
API reference
, https://seaborn.pydata.org/generated/seaborn.heatmap.html, Accessed September 13, 2024.
79.
Seaborn
, “
Seaborn Pairplot
,”
API reference
. https://seaborn.pydata.org/generated/seaborn.pairplot.html, Accessed September 13, 2024.
80.
Dhiraj
,
B.
, and
Kaggle
,
2024
, “
Let's Explore How to Read and Interpret Heatmap & Correlation Map
,”
Heatmap Interpretation
. https://www.kaggle.com/discussions/general/414787, Accessed September 13, 2024,
81.
geeksforgeeks
, “
Data visualization with Seaborn Pairplot
,”
Data visualization
. https://www.geeksforgeeks.org/data-visualization-with-pairplot-seaborn-and-pandas/, Accessed September 13, 2024.
82.
Newman
,
J.
, Jr.
, and
Raju
,
I.
,
1984
, “
Prediction of Fatigue Crack-Growth Patterns and Lives in Three-Dimensional Cracked Bodies
,”
Proceedings of the 6th International Conference on Fracture (ICF6)
,
New Delhi, India
,
Dec. 4–10
, pp.
1597
1608
. .
83.
Tian
,
W.
,
2013
, “
A Review of Sensitivity Analysis Methods in Building Energy Analysis
,”
Renew. Sustain. Energy Rev.
,
20
(
4
), pp.
411
419
.
84.
Wang
,
X.-Z.
,
Li
,
C.-G.
,
Yeung
,
D. S.
,
Song
,
S.
, and
Feng
,
H.
,
2008
, “
A Definition of Partial Derivative of Random Functions and Its Application to RBFNN Sensitivity Analysis
,”
Neurocomputing
,
71
(
7–9
), pp.
1515
1526
.
85.
Huda
,
Z.
,
Taib
,
N. I.
, and
Zaharinie
,
T.
,
2009
, “
Characterization of 2024-T3: An Aerospace Aluminum Alloy
,”
Mater. Chem. Phys.
,
113
(
2–3
), pp.
515
517
.
You do not currently have access to this content.