A systematic study on the influence of the cell geometry of a cardiovascular stent on its radial compliance and longitudinal strain is presented. Eight stent cell geometries—based on common lattice cells—are compared using finite element analysis. It is found that, for a given strut thickness, the radial compliance depends on the shape of the cell and is intimately connected with the longitudinal strain through effective Poisson’s ratio, which depends on the cell geometry. It is demonstrated experimentally that a hybrid stent containing both positive and negative Poisson’s ratio cell lattice geometries exhibited very low values of longitudinal strain. This study indicates that cell geometries may be tailored to minimize longitudinal stresses imposed by the stent onto the artery wall.

References

1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1997,
Cellular Solids: Structure and Properties, 2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
2.
Phani
,
A. S.
,
Woodhouse
,
J.
, and
Fleck
,
N. A.
, 2006, “
Wave Propagation in Two Dimensional Periodic Lattices
,”
J. Acoust. Soc. Am.
,
119
, pp.
1995
2005
.
3.
Rachev
,
A.
,
Manoach
,
E.
,
Bery
,
J.
, and
Moore
,
J. E.
, Jr
., 2000, “
A Model of Stress-Induced Geometrical Remodeling of Vessel Segments Adjacent to Stents and Artery/graft Anastomoses
,”
J. Theor. Biol.
,
206
(
3
), pp.
429
443
.
4.
Valentin
,
A.
, and
Humphrey
,
J.
, 2009, “
Evaluation of Fundamental Hypotheses Underlying Constrained Mixture Models of Arterial Growth and Remodeling
,”
Philos. Trans. R. Soc. London
,
367
(
1902
), pp.
3585
3606
.
5.
Moore
,
J.
, and
Berry
,
J.
, 2001, “
Fluid and Solid Mechanical Implications of Vascular Stenting
,”
Ann. Biomed. Eng.
,
30
, pp.
498
508
.
6.
Rogers
,
C.
, and
Edelman
,
E.
, 1995, “
Endovascular Stent Design Dictates Experimental Restenosis and Thrombosis
,”
Circulation
,
91
, pp.
2995
3001
.
7.
Berry
,
J. L.
,
Manoach
,
E.
,
Mekkaoui
,
C.
,
Rolland
,
P.
,
Moore
,
J.
, Jr
., and
Rachev
,
A.
, 2002, “
Hemodynamics and Wall Mechanics of a Compliance Matching Stent: In Vitro and In Vivo Analysis
,”
J. Vasc. Interv. Radiol.
,
13
(
1
), pp.
97
105
.
8.
Bedoya
,
J.
,
Meyer
,
C.
,
Timmins
,
L.
, and
Moore
,
J.
, 2006, “
Effects of Stent Design Parameters on Normal Artery Wall Mechanics
,”
J. Biomech. Eng.
,
128
, pp.
757
767
.
9.
Lally
,
C.
,
Dolan
,
F.
, and
Prendergast
,
P. J.
, 2005, “
Cardiovascular Stent Design and Vessel Stresses: A Finite Element Analysis
,”
J. Biomech.
,
38
, pp.
1574
1581
.
10.
Holzapfel
,
G.
,
Stadler
,
M.
, and
Gasser
,
T.
, 2005, “
Changes in the Mechanical Environment of Stenotic Arteries During Interaction With Stents: Computational Assessment of Parametric Stent Designs
,”
J. Biomech. Eng.
,
127
, pp.
166
180
.
11.
Migliavacca
,
F. L., P.
,
Colombo
,
M.
,
Auricchio
,
F.
, and
Pietrabissa
,
R.
, 2002, “
Mechanical Behavior of Coronary Stents Investigated Through the Finite Element Method
,”
J. Biomech.
,
35
(
6
), pp.
803
811
.
12.
Petrini
,
L.
,
Migliavacca
,
F.
,
Auricchio
,
F.
, and
Dubini
,
G.
, 2004, “
Numerical Investigation of the Intravascular Coronary Stent Flexibility
,”
J. Biomech.
,
37
, pp.
495
501
.
13.
Ju
,
F.
,
Xia
,
Z.
, and
Sasaki
,
K.
, 2008, “
On the Finite Element Modeling of Balloon Expandable Stents
,”
J. Mech. Behav. Biomed. Mater.
,
1
, pp.
86
95
.
14.
Mortier
,
P.
,
De Beule
,
M.
, and
Van Loo
,
D.
, 2009, “
Finite Element Analysis of Side Branch Access During Bifurcation Stenting
,”
Med. Eng. Phys.
,
31
, pp.
434
440
.
15.
Tan
,
L. B.
,
Webb
,
D. C.
,
Kormi
,
K.
, and
Al-Hassani
,
S. T. S.
, 2001, “
A Method for Investigating the Mechanical Properties of Intracoronary Stents Using Finite Element Numerical Simulation
,”
Int. J. Cardiol.
,
78
, pp.
51
67
.
16.
Kastrati
,
A.
,
Mehilli
,
J.
,
Dirschinger
,
J.
,
Pache
,
J.
,
Ulm
,
K.
,
Schühlen
,
H.
,
Seyfarth
,
M.
,
Schmitt
,
C.
,
Blasini
,
R.
,
Neumann
,
F. J.
, and
Schömig
,
A.
, 2001, “
Restenosis After Coronary Placement of Various Stent Types
,”
Am. J. Cardiol.
,
87
(
1
), pp.
34
39
.
17.
Raamachandran
,
J.
, and
Jayavenkateshwaran
,
K.
, 2007, “
Modeling of Stents Exhibiting Negative Poisson’s Ratio Effect
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
4
), pp.
245
255
.
18.
Edelman
,
E. R.
, and
Rogers
,
C.
, 1996, “
Hoop Dreams: Stents Without Restenosis
,”
Circulation
,
94
, pp.
1199
1202
.
19.
Leung
,
D.
,
Glagov
,
S.
, and
Mathews
,
M. B.
, 1976, “
Cyclic Stretching Stimulates Synthesis of Matrix Components by Arterial Smooth Muscle Cells in Vitro
,”
Science
,
191
(
4226
), pp.
475
477
.
20.
Yoshitomi
,
Y.
,
Kojima
,
S.
,
Yano
,
M.
,
Sugi
,
T.
,
Matsumoto
,
Y.
,
Saotome
,
M.
,
Tanaka
,
K.
,
Endo
,
M.
, and
Kuramochi
,
M.
, 2001, “
Does Stent Design Affect Probability of Restenosis? A Randomized Trial Comparing Multilink Stents With GFX Stents
,”
Am. Heart J.
,
142
(
3
), pp.
445
451
.
21.
Hara
,
H.
,
Nakamura
,
M.
,
Palmaz
,
J.
, and
Schwartz
,
R. S.
, 2006, “
Role of Stent Design and Coatings on Restenosis and Thrombosis
,”
Adv. Drug Delivery Rev.
,
58
, pp.
377
386
.
22.
Hoffmann
,
R.
,
Mintz
,
G. S.
,
Haager
,
P. K.
,
Bozoglu
,
T.
,
Grube
,
E.
,
Gross
,
M.
,
Beythien
,
C.
,
Mudra
,
H.
,
vom Dahl
,
J.
, and
Hanrath
,
P.
, 2002, “
Relation of Stent Design and Stent Surface Material to Subsequent In-Stent Intimal Hyperplasia in Coronary Arteries Determined by Intravascular Ultrasound
,”
Am. J. Cardiol.
,
89
(
12
), pp.
1360
1364
.
You do not currently have access to this content.