Abstract

Nickel coatings have demonstrated significant benefits in protecting copper from oxidation and fouling, thereby enhancing the longevity of copper-based components. This study employed an electroplating apparatus featuring a Watts bath and copper electrode to investigate the impact of flowing electrolyte, both with and without an applied magnetic field, on the interfacial characteristics of nickel-coated copper surfaces. The findings reveal the relationship between current density and deposition thickness. The application of a perpendicular magnetic field and increase in current density generally increased coating thickness to 0.2 μm from 0.05 μm, with the most pronounced effects at moderate flow rates and narrower gaps; however, at the highest flowrate and widest gap, deposition thickness diminished due to the divergence of magnetic field lines. Design of experiments (DOE) analysis revealed that the magnetic field homogeneously improved surface roughness uniformity compared to other variables. Lower current densities produced smoother surfaces, while magnetically assisted electroplating yielded consistent roughness values even at higher current densities. Exposure to the magnetic field improved wettability, evidenced by decreased contact angles. This enhancement is attributed to the alignment of nickel particles during deposition, facilitating a transition from the Cassie-Baxter to the Wenzel wetting state. Notably, thicker deposits were observed at lower flow rates and narrower electrode gaps, suggesting significant influence of gas bubble dynamics on the deposition process. These findings provide insights into the complex interplay between electrochemical reactions, hydrodynamics, and magnetic fields in nickel electrodeposition, with implications for optimizing coating.

References

1.
Kanani
,
N.
,
2004
,
Electroplating: Basic Principles, Processes and Practice
,
Elsevier
,
New York
.
2.
Sebayang
,
D.
, and
Hasan
,
S.
,
2012
,
Electroplating
,
BoD–Books on Demand
,
New York
.
3.
Priyadarshi
,
P.
,
Kishore
,
K.
, and
Maurya
,
R.
,
2023
, “
Electrodeposited Ni on Copper Substrate: An Experimental and Simulation Comparative Study
,”
Int. J. Interact. Des. Manuf. (IJIDeM)
,
17
(
4
), pp.
1489
1495
.10.1007/s12008-022-01166-8
4.
Chintada
,
V. B.
,
Koona
,
R.
, and
Bahubalendruni
,
M. R.
,
2021
, “
State of Art Review on Nickel-Based Electroless Coatings and Materials
,”
J. Bio-Tribo-Corros.
,
7
(
4
), p.
134
.10.1007/s40735-021-00568-7
5.
Santiago Galicia
,
E.
,
Kinjo
,
T.
,
Som Onn
,
O.
,
Saiwai
,
T.
,
Takita
,
K.
,
Orito
,
K.
, and
Enoki
,
K.
,
2023
, “
Heat Transfer Deterioration by the Copper Oxide Layer on Horizontal Subcooled Flow Boiling
,”
Appl. Mech.
,
4
(
1
), pp.
20
30
.10.3390/applmech4010002
6.
Sathish
,
M.
,
Radhika
,
N.
, and
Saleh
,
B.
,
2023
, “
Current Status, Challenges, and Future Prospects of Thin Film Coating Techniques and Coating Structures
,”
J. Bio-Tribo-Corros.
,
9
(
2
), p.
35
.10.1007/s40735-023-00754-9
7.
Lelevic
,
A.
, and
Walsh
,
F. C.
,
2019
, “
Electrodeposition of NiP Alloy Coatings: A Review
,”
Surf. Coat. Technol.
,
369
, pp.
198
220
.10.1016/j.surfcoat.2019.03.055
8.
Bebelis
,
S.
,
Bouzek
,
K.
,
Cornell
,
A.
,
Ferreira
,
M. G. S.
,
Kelsall
,
G. H.
,
Lapicque
,
F.
,
Ponce de León
,
C.
,
Rodrigo
,
M. A.
, and
Walsh
,
F. C.
,
2013
, “
Highlights During the Development of Electrochemical Engineering
,”
Chem. Eng. Res. Des.
,
91
(
10
), pp.
1998
2020
.10.1016/j.cherd.2013.08.029
9.
Zhang
,
Y.
,
Wei
,
L.
,
Zhang
,
H.
,
Wang
,
J.
,
Ma
,
C.
, and
Xu
,
F.
,
2022
, “
Study on Magnetic-Field-Assisted Electrodeposited Ni-SiC Nanocomposites
,”
J. Mater. Eng. Perform.
,
31
(
1
), pp.
602
612
.10.1007/s11665-021-06213-1
10.
Biswal
,
H. J.
,
Kaur
,
J. J.
,
Vundavilli
,
P. R.
, and
Gupta
,
A.
,
2022
, “
Recent Advances in Energy Field Assisted Hybrid Electrodeposition and Electroforming Processes
,”
CIRP J. Manuf. Sci. Technol.
,
38
, pp.
518
546
.10.1016/j.cirpj.2022.05.013
11.
Ma
,
C.
,
He
,
H.
,
Xia
,
F.
,
Xiao
,
Z.
, and
Liu
,
Y.
,
2023
, “
Performance of Ni–SiC Composites Deposited Using Magnetic-Field-Assisted Electrodeposition Under Different Magnetic-Field Directions
,”
Ceram. Int.
,
49
(
22
), pp.
35907
35916
.10.1016/j.ceramint.2023.08.271
12.
Kołodziejczyk
,
K.
,
Miękoś
,
E.
,
Zieliński
,
M.
,
Jaksender
,
M.
,
Szczukocki
,
D.
,
Czarny
,
K.
, and
Krawczyk
,
B.
,
2018
, “
Influence of Constant Magnetic Field on Electrodeposition of Metals, Alloys, Conductive Polymers, and Organic Reactions
,”
J. Solid State Electrochem.
,
22
(
6
), pp.
1629
1647
.10.1007/s10008-017-3875-x
13.
Long
,
Q.
,
Zhong
,
Y.
, and
Wu
,
J.
,
2020
, “
Research Progress of Magnetic Field Techniques for Electrodeposition of Coating
,”
Int. J. Electrochem. Sci.
,
15
(
8
), pp.
8026
8040
.10.20964/2020.08.40
14.
Leiden
,
A.
,
Kölle
,
S.
,
Thiede
,
S.
,
Schmid
,
K.
,
Metzner
,
M.
, and
Herrmann
,
C.
,
2020
, “
Model-Based Analysis, Control and Dosing of Electroplating Electrolytes
,”
Int. J. Adv. Manuf. Technol.
,
111
(
5–6
), pp.
1751
1766
.10.1007/s00170-020-06190-0
15.
Ng
,
X. W.
,
2022
, “
Hydrodynamic or Forced Convection Voltammetry
,”
Concise Guide to Electrochemical Methods and Voltammetry: A Problem-Based Test Prep for Students
,
Springer
, Berlin, Germany, pp.
99
108
.10.1007/978-3-030-83414-2_4
16.
Soegijono
,
B.
Susetyo
., and
F. B.
,
Basori
,
2022
, “
Magnetic Field Exposure on Electroplating Process of Ferromagnetic Nickel Ion on Copper Substrate
,”
J. Phys. Conf. Ser.
,
2377
(
1
), p.
012002
.10.1088/1742-6596/2377/1/012002
17.
Skibińska
,
K.
,
Elsharkawy
,
S.
,
Kołczyk-Siedlecka
,
K.
,
Kutyła
,
D.
, and
Żabiński
,
P.
,
2024
, “
Influence of the Applied External Magnetic Field on the Deposition of Ni–Cu Alloys
,”
Metals
,
14
(
3
), p.
281
.10.3390/met14030281
18.
Bund
,
A.
,
Ispas
,
A.
, and
Mutschke
,
G.
,
2008
, “
Magnetic Field Effects on Electrochemical Metal Depositions
,”
Sci. Technol. Adv. Mater.
,
9
(
2
), p.
024208
.10.1088/1468-6996/9/2/024208
19.
Kermoune
,
H.
,
Levesque
,
A.
,
Douglad
,
J.
,
Rehamnia
,
R.
, and
Chopart
,
J.
,
2017
, “
Magnetic Field Effect on Zn-Co Alloy Electroplating
,”
Ionics
,
23
(
12
), pp.
3565
3570
.10.1007/s11581-017-2156-0
20.
Rozati
,
S. A.
,
Keesara
,
P.
,
Mahajan
,
C.
,
Mondal
,
K.
, and
Gupta
,
A.
,
2022
, “
Magnetically Aligned Metal-Organic Deposition (MOD) Ink Based Nickel/Copper Heater Surfaces for Enhanced Boiling Heat Transfer
,”
Appl. Therm. Eng.
,
211
, p.
118473
.10.1016/j.applthermaleng.2022.118473
21.
Cavazzuti
,
M.
, and
Cavazzuti
,
M.
,
2013
, “
Design of Experiments
,”
Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics
, Springer, Berlin, Germany, pp.
13
42
.10.1007/978-3-642-31187-1_2
22.
Draper
,
N. R.
, and
Pukelsheim
,
F.
,
1996
, “
An Overview of Design of Experiments
,”
Stat. Papers
,
37
(
1
), pp.
1
32
.10.1007/BF02926157
23.
Vigdorowitsch
,
M.
,
Tsygankova
,
L. E.
,
Ostrikov
,
V. V.
, and
Rodionova
,
L. D.
,
2022
, “
Beyond the Wenzel and Cassie–Baxter World: Mathematical Insight into Contact Angles
,”
Math. Methods Appl. Sci.
,
45
(
17
), pp.
11479
11497
.10.1002/mma.8462
You do not currently have access to this content.