Abstract

The study numerically investigates the flow behavior around a mono-pile with scour protection under steady and oscillatory flow conditions. A hydrodynamic model based on volume-averaged Reynolds-averaged Navier–Stokes (VARANS) equations with the volume-averaged k-ω turbulence closure is developed and implemented in openfoam. Three porosity transition types, i.e., constant, linear and parabolic, near the interface between stone cover and free flow are first evaluated in two-dimensional models. The simulated results, i.e., flow velocities, turbulence levels and bed shear stresses, are compared with previous experiments under steady and oscillatory flow conditions. The parabolic transition shows the best agreement with the measurements and is therefore used in the developed model. Under steady current, a three-dimensional model is validated against experimental measurements including flow features both inside and outside of the scour protection around a mono-pile, and it exhibits relatively good performance. Further, the volume-averaged k-ω model shows better agreement to experiments in porous medium compared to results from k-ω shear stress transport and volume-averaged k-ɛ models. The model is applied to investigate the flow patterns under the oscillatory flow condition. The results show that a horseshoe vortex is formed, and it penetrates the entire scour protection, which generates high flow velocities and bed shear stresses; erosion is most likely to occur at the area in the presence of vortex, which poses a threat to the pile stability. The simulations demonstrate the ability of the developed model to evaluate the flow behavior in scour protection.

References

1.
Sumer
,
B. M.
,
Cokgor
,
S.
, and
Fredsøe
,
J.
,
2001
, “
Suction Removal of Sediment From Between Armor Blocks
,”
J. Hydraul. Eng.
,
127
(
4
), pp.
293
306
.
2.
Sumer
,
B. M.
,
Fredsøe
,
J.
, and
Christiansen
,
N.
,
1992
, “
Scour Around Vertical Pile in Waves
,”
J. Waterw. Port, Coastal, Ocean Eng.
,
118
(
1
), pp.
15
31
.
3.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
2002
,
The Mechanics of Scour in the Marine Environments
,
World Scientific
,
Singapore
.
4.
Breusers
,
H.N.C.
, and
Raudkivi
,
A.J.
,
1991
,
Scouring Hydraulic Structures Design Manual
, vol.
2
,
Balkemna
,
Rotterdam
.
5.
Hoffmans
,
G.J.C.M.
, and
Verheij
,
H.J.
,
2017
,
Scour Manual
,
Routledge
,
UK
.
6.
Whitehouse
,
R. J. S.
,
1998
,
Scour at Marine Structures: A Manual for Practical Applications
,
Thomas Telford
,
UK
.
7.
Melville
,
B.
, and
Coleman
,
S. E.
,
2000
,
Bridge Scour
,
Water Resources Publications
,
USA
.
8.
Baykal
,
C.
,
Sumer
,
B. M.
,
Fuhrman
,
D. R.
,
Jacobsen
,
N. G.
, and
Fredsøe
,
J.
,
2015
, “
Numerical Investigation of Flow and Scour Around a Vertical Circular Cylinder
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
373
(
2033
), p.
20140104
.
9.
Harris
,
J. M.
,
Whitehouse
,
R. J. S.
, and
Benson
,
T.
,
2010
, “
The Time Evolution of Scour Around Offshore Structures
,”
Proc. Inst. Civ. Eng.—Marit. Eng.
,
163
(
1
), pp.
3
17
.
10.
Khosronejad
,
A.
,
Kang
,
S.
, and
Sotiropoulos
,
F.
,
2012
, “
Experimental and Computational Investigation of Local Scour Around Bridge Piers
,”
Adv. Water Resour.
,
37
, pp.
73
85
.
11.
Kirkil
,
G.
,
Constantinescu
,
S. G.
, and
Ettema
,
R.
,
2008
, “
Coherent Structures in the Flow Field Around a Circular Cylinder With Scour Hole
,”
J. Hydraul. Eng.
,
134
(
5
), pp.
572
587
.
12.
Liu
,
X.
, and
García
,
M. H.
,
2008
, “
Three-Dimensional Numerical Model With Free Water Surface and Mesh Deformation for Local Sediment Scour
,”
J. Waterw. Port, Coastal, Ocean Eng.
,
134
(
4
), pp.
203
217
.
13.
Nielsen
,
A. W.
, and
Hansen
,
E. A.
,
2007
, “
Time-Varying Wave and Current-Induced Scour Around Offshore Wind Turbines
,”
Volume 5: Ocean Space Utilization; Polar and Arctic Sciences and Technology; The Robert Dean Symposium on Coastal and Ocean Engineering; Special Symposium on Offshore Renewable Energy
,
ASMEDC
, pp.
399
408
.
14.
Sørensen
,
S. P. H.
, and
Ibsen
,
L. B.
,
2013
, “
Assessment of Foundation Design for Offshore Monopiles Unprotected Against Scour
,”
Ocean Eng.
,
63
, pp.
17
25
.
15.
Raaijmakers
,
T.
, and
Rudolph
,
D.
,
2008
, “
Time-Dependent Scour Development Under Combined Current and Waves Conditions—Laboratory Experiments With Online Monitoring Technique
,”
Proceedings of 4th International Conference of Scour Erosion
,
ICSE
,
Tokyo, Japan
.
16.
Roulund
,
A.
,
Sumer
,
B. M.
,
Fredsøe
,
J.
, and
Michelsen
,
J.
,
2005
, “
Numerical and Experimental Investigation of Flow and Scour Around a Circular Pile
,”
J. Fluid Mech.
,
534
, pp.
351
401
.
17.
Zhao
,
M.
,
Cheng
,
L.
, and
Zang
,
Z.
,
2010
, “
Experimental and Numerical Investigation of Local Scour Around a Submerged Vertical Circular Cylinder in Steady Currents
,”
Coast. Eng.
,
57
(
8
), pp.
709
721
.
18.
Hansen
,
E. A.
,
Simonsen
,
H. J.
,
Nielsen
,
A. W.
,
Høgedal
,
M.
, and
Pedersen
,
J.
,
2007
, “
Scour Protection Around Offshore Wind Turbine Foundations, Full-Scale Measurements
,”
European Wind Energy Conference and Exhibition 2007, EWEC 2007.
19.
Nielsen
,
A. W.
,
Sumer
,
B. M.
, and
Petersen
,
T. U.
,
2014
, “
Sinking of Scour Protections at Horns Rev 1 Offshore Wind Farm
,”
Coast. Eng. Proc.
,
1
(
34
), p.
67
.
20.
Petersen
,
T. U.
,
Mutlu Sumer
,
B.
,
Fredsøe
,
J.
,
Raaijmakers
,
T. C.
, and
Schouten
,
J.-J.
,
2015
, “
Edge Scour at Scour Protections Around Piles in the Marine Environment—Laboratory and Field Investigation
,”
Coast. Eng.
,
106
, pp.
42
72
.
21.
Raaijmakers
,
T. C.
,
van Oeveren
,
M. C.
,
Rudolph
,
D.
,
Leenders
,
V.
, and
Sinjou
,
W. C. P.
,
2010
, “Field Performance of Scour Protection Around Offshore Monopiles,”
Scour and Erosion
,
American Society of Civil Engineers
,
Reston, VA
, pp.
428
339
.
22.
Whitehouse
,
R. J. S.
,
Harris
,
J. M.
,
Sutherland
,
J.
, and
Rees
,
J.
,
2011
, “
The Nature of Scour Development and Scour Protection at Offshore Windfarm Foundations
,”
Mar. Pollut. Bull.
,
62
(
1
), pp.
73
88
.
23.
Chiew
,
Y. M.
,
2002
, “
Failure Mechanism of Riprap Layer Around Bridge Piers
,”
First International Conference on Scour of Foundations
,
College Station, TX
, pp.
70
91
.
24.
Lauchlan
,
C. S.
, and
Melville
,
B. W.
,
2001
, “
Riprap Protection at Bridge Piers
,”
J. Hydraul. Eng.
,
127
(
5
), pp.
412
418
.
25.
Nielsen
,
A. W.
,
Probst
,
T.
,
Petersen
,
T. U.
, and
Sumer
,
B. M.
,
2015
, “
Sinking of Armour Layer Around a Vertical Cylinder Exposed to Waves and Current
,”
Coast. Eng.
,
100
, pp.
58
66
.
26.
Sumer
,
B. M.
, and
Nielsen
,
A. W.
,
2013
, “
Sinking Failure of Scour Protection at Wind Turbine Foundation
,”
Proc. Inst. Civ. Eng.—Energy.
,
166
(
2
), pp.
170
188
.
27.
Nielsen
,
A. W.
,
2011
, “
Scour Protection of Offshore Wind Farms
,”
Ph.D. thesis
,
Technical University of Denmark
,
Denmark
.
28.
Nielsen
,
A. W.
,
Mutlu Sumer
,
B.
,
Fredsøe
,
J.
, and
Christensen
,
E. D.
,
2011
, “
Sinking of Armour Layer Around a Cylinder Exposed to a Current
,”
Proc. Inst. Civ. Eng.—Marit. Eng.
,
164
(
4
), pp.
159
172
.
29.
Dargahi
,
B.
,
1989
, “
The Turbulent Flow Field Around a Circular Cylinder
,”
Exp. Fluids
,
8
(
1
), pp.
1
12
.
30.
Nielsen
,
A. W.
,
Liu
,
X.
,
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
2013
, “
Flow and Bed Shear Stresses in Scour Protections Around a Pile in a Current
,”
Coast. Eng.
,
72
, pp.
20
38
.
31.
Stevanato
,
F.
,
Nielsen
,
A. W.
,
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
2010
, “Flow Velocities and Bed Shear Stresses in a Stone Cover Under an Oscillatory Flow,”
Scour and Erosion
,
American Society of Civil Engineers
,
Reston, VA
, pp.
609
618
.
32.
Nielsen
,
A. W.
, and
Petersen
,
T. U.
,
2019
, “
Stability of Cover Stones Around a Vertical Cylinder Under the Influence of Waves and Current
,”
Coast. Eng.
,
154
, p.
103563
.
33.
Liu
,
P. L.-F.
,
Lin
,
P.
,
Chang
,
K.-A.
, and
Sakakiyama
,
T.
,
1999
, “
Numerical Modeling of Wave Interaction With Porous Structures
,”
J. Waterw. Port, Coastal, Ocean Eng.
,
125
(
6
), pp.
322
330
.
34.
Troch
,
P.
, and
De Rouck
,
J.
,
1999
, “
An Active Wave Generating-Absorbing Boundary Condition for VOF Type Numerical Model
,”
Coast. Eng.
,
38
(
4
), pp.
223
247
.
35.
van Gent
,
M. R. A.
,
1995
, “
Porous Flow Through Rubble-Mound Material
,”
J. Waterw. Port, Coastal, Ocean Eng.
,
121
(
3
), pp.
176
181
.
36.
van Gent
,
M. R. A.
,
1995
, “
Wave Interaction with Permeable Coastal Structures
,”
Ph.D. thesis
,
Delft University of Technology
,
Netherlands
.
37.
Jensen
,
B.
,
Jacobsen
,
N. G.
, and
Christensen
,
E. D.
,
2014
, “
Investigations on the Porous Media Equations and Resistance Coefficients for Coastal Structures
,”
Coast. Eng.
,
84
, pp.
56
72
.
38.
Losada
,
I. J.
,
Lara
,
J. L.
, and
Losada
,
M. A.
,
2000
, “
Experimental Study on the Influence of Bottom Permeability on Wave Breaking and Associated Processes
,”
Coast. Eng. 2000—Proceedings of the 27th International Conference on Coastal Engineering, ICCE 2000.
39.
Sakakiyama
,
T.
, and
Liu
,
P. L. F.
,
2001
, “
Laboratory Experiments for Wave Motions and Turbulence Flows in Front of a Breakwater
,”
Coast. Eng.
,
44
(
2
), pp.
117
139
.
40.
Fang
,
H.
,
Han
,
X.
,
He
,
G.
, and
Dey
,
S.
,
2018
, “
Influence of Permeable Beds on Hydraulically Macro-Rough Flow
,”
J. Fluid Mech.
,
847
, pp.
552
590
.
41.
Kuwata
,
Y.
, and
Suga
,
K.
,
2017
, “
Direct Numerical Simulation of Turbulence Over Anisotropic Porous Media
,”
J. Fluid Mech.
,
831
, pp.
41
71
.
42.
Liu
,
Q.
, and
Prosperetti
,
A.
,
2011
, “
Pressure-Driven Flow in a Channel With Porous Walls
,”
J. Fluid Mech.
,
679
, pp.
77
100
.
43.
Liu
,
Y.
,
Stoesser
,
T.
,
Fang
,
H.
,
Papanicolaou
,
A.
, and
Tsakiris
,
A. G.
,
2017
, “
Turbulent Flow Over an Array of Boulders Placed on a Rough, Permeable Bed
,”
Comput. Fluids
,
158
, pp.
120
132
.
44.
Mandviwalla
,
X.
, and
Christensen
,
E. D.
,
2021
, “
Entrainment of Sediment Particles in Protection Layers
,”
J. Hydraul. Eng.
,
147
(
10
), p.
04021040
.
45.
Mazzuoli
,
M.
, and
Uhlmann
,
M.
,
2017
, “
Direct Numerical Simulation of Open-Channel Flow Over a Fully Rough Wall at Moderate Relative Submergence
,”
J. Fluid Mech.
,
824
, pp.
722
765
.
46.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
, 3rd ed.,
CA: DCW Industries
,
La Canada
.
47.
Nakayama
,
A.
, and
Kuwahara
,
F.
,
1999
, “
A Macroscopic Turbulence Model for Flow in a Porous Medium
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
427
433
.
48.
Sumer
,
B. M.
,
2007
, “
Mathematical Modelling of Scour: A Review
,”
J. Hydraul. Res.
,
45
(
6
), pp.
723
735
.
49.
Sumer
,
B. M.
, and
Fuhrman
,
D. R.
,
2020
,
Turbulence in Coastal and Civil Engineering
,
World Scientific
,
Singapore
.
50.
Zhai
,
Y.
, and
Christensen
,
E. D.
,
2021
, “
Numerical Simulations Inside a Stone Protection Layer With a Modified k-ω Turbulence Model
,”
Submitt. to Coast. Eng. Under Rev. March
.
51.
Mutlu Sumer
,
B.
,
Whitehouse
,
R. J. S.
, and
Tørum
,
A.
,
2001
, “
Scour Around Coastal Structures: A Summary of Recent Research
,”
Coast. Eng.
,
44
(
2
), pp.
153
190
.
52.
Hsu
,
T.-J.
,
Sakakiyama
,
T.
, and
Liu
,
P. L. F.
,
2002
, “
A Numerical Model for Wave Motions and Turbulence Flows in Front of a Composite Breakwater
,”
Coast. Eng.
,
46
(
1
), pp.
25
50
.
53.
Fredsøe
,
J.
,
Andersen
,
K. H.
, and
Mutlu Sumer
,
B.
,
1999
, “
Wave Plus Current Over a Ripple-Covered bed
,”
Coast. Eng.
,
38
(
4
), pp.
177
221
.
54.
Sumer
,
B. M.
,
Arnskov
,
M. M.
,
Christiansen
,
N.
, and
Jørgensen
,
F. E.
,
1993
, “
Two-Component Hot-Film Probe for Measurements of Wall Shear Stress
,”
Exp. Fluids.
,
15
(
6
), pp.
380
384
.
55.
Schippers
,
M. M. A.
,
Jacobsen
,
N. G.
,
Dalyander
,
P. S.
,
Nelson
,
T.
, and
McCall
,
R.
,
2017
, “
Incipient Motion of Sand-Oil Agglomerates
,”
Proceeding Coast. Dyn.
56.
Graf
,
W. H.
, and
Yulistiyanto
,
B.
,
1998
, “
Experiments on Flow Around a Cylinder; the Velocity and Vorticity Fields
,”
J. Hydraul. Res.
,
36
(
4
), pp.
637
654
.
57.
Sumer
,
B. M.
,
Chua
,
L. H. C.
,
Cheng
,
N.-S.
, and
Fredsøe
,
J.
,
2003
, “
Influence of Turbulence on Bed Load Sediment Transport
,”
J. Hydraul. Eng.
,
129
(
8
), pp.
585
596
.
58.
Sumer
,
B. M.
,
Christiansen
,
N.
, and
Fredsøe
,
J.
,
1997
, “
The Horseshoe Vortex and Vortex Shedding Around a Vertical Wall-Mounted Cylinder Exposed to Waves
,”
J. Fluid Mech.
,
332
, pp.
41
70
.
You do not currently have access to this content.