Abstract

With the long-term operation of nuclear power plants, evaluating the integrity of reactor pressure vessels (RPVs) against neutron irradiation has become increasingly important. In the context of pressurized thermal shock (PTS) evaluation, the flaw stability of the reactor vessel has been assessed using fracture mechanics for a postulated flaw. Neutron irradiation may reduce the safety margins of certain plants, potentially raising concerns regarding nuclear safety. For this countermeasure, the applicability of the Beremin model, which is a statistical procedure considering the stress multi-axiality, has been investigated to mitigate excessive conservatism in the conventional fracture mechanics and to perform a realistic fracture evaluation using a physical model for cleavage fracture. In this paper, the applicability of a model coupled with the Beremin model with the Gurson–Tvergaard–Needleman (GTN) models was examined to establish a more precise fracture evaluation method for realistic structures in which cleavage fracture occurs after a small ductile crack growth in the ductile-brittle transition temperature (DBTT) region. After determining the parameters of the Beremin model to characterize cleavage fracture and the GTN model parameters to characterize ductile fracture with the C(T) and SE(B) specimens, these parameter values were used in the coupled model to predict the 5% and 95% confidence limits of critical cleavage fracture of a surface-flawed plate specimen with a thickness of 50 mm under bending or tensile load with nearly the same constraint as a reactor vessel. When the fracture tests using a flat plate with a surface flaw of depth/thickness 0.1 under bending or tensile load were performed at temperatures –80 °C and –120 °C, most of all the critical Ks of the specimens were within the upper and lower bounds of the predicted critical K values. At the temperature –80 °C which caused a small ductile crack, the predicted critical K values by the coupled model were better than those by the Beremin model comparing with the test data. As a result, it was confirmed that the coupled model was a proper procedure for the cleavage fracture associated with small ductile crack growth.

References

1.
Minami
,
F.
,
Brückner-Foit
,
A.
,
Munz
,
D.
, and
Trolldenier
,
B.
,
1992
, “
Estimation Procedure for the Weibull Parameters Used in the Local Approach
,”
Int. J. Fract.
,
54
(
3
), pp.
197
210
.10.1007/BF00035355
2.
ISO 27306
,
2016
, “
Metallic Materials—Method of Constraint Loss Correction of CTOD Fracture Toughness for Fracture Assessment of Steel Components
,”
ISO
,
Geneva, Switzerland
, Standard No. ISO27306:2009.
3.
WES 2808
,
2003
, “
Method of Assessing Brittle Fracture in Steel Weldments Subjected to Large Cyclic and Dynamic Strain
,”
Japan Welding Engineering Society
,
Tokyo, Japan
, Standard No. WES
2808
2003
.
4.
Minami
,
F.
,
Takashima
,
Y.
,
Ohata
,
M.
,
Shimada
,
Y.
,
Suzuki
,
T.
,
Shimanuki
,
H.
,
Igi
,
S.
,
Ishii
,
T.
,
Kinefuchi
,
M.
,
Yamaguchi
,
T.
, and
Hagihara
,
Y.
,
2018
, “
Fracture Assessment Procedure Developed in Japan for Steel Structures Under Seismic Conditions
,”
Eng. Fract. Mech.
,
187
, pp.
142
164
.10.1016/j.engfracmech.2017.10.034
5.
BS 7910
,
2019
, “
Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures
,” BSI Standards Publication, London, UK, Standard No. BS 7910:2019.
6.
Hirota
,
T.
,
Nagoshi
,
Y.
,
Hojo
,
K.
,
Okada
,
H.
,
Takahashi
,
A.
,
J.
,
Katsuyama
,
T.
,
Ueda
,
T.
,
Okada
,
T.
,
Yashirodai
,
K.
,
Ohata
,
M.
, and
Minami
,
F.
,
2021
, “
Benchmark Analysis by Beremin Model and GTN Model in CAF Subcommittee
,”
ASME
Paper No. PVP2021-61668.10.1115/PVP2021-61668
7.
Beremin
,
F. M.
,
Pineau
,
A.
,
Mudry
,
F.
,
Devaux
,
J. C.
,
D'Escatha
,
Y.
, and
Ledermann
,
P.
,
1983
, “
A Local Criterion for Cleavage Fracture of a Nuclear Pressure Vessel Steel
,”
Metall. Trans. A
,
14
(
11
), pp.
2277
2287
.10.1007/BF02663302
8.
Mudry
,
F.
,
1987
, “
A Local Approach to Cleavage Fracture
,”
Nucl. Eng. Des.
,
105
(
1
), pp.
65
76
.10.1016/0029-5493(87)90230-5
9.
Bernauer
,
G.
,
Brocks
,
W.
, and
Schmitt
,
W.
,
1999
, “
Modifications of the Beremin Model for Cleavage Fracture in the Transition Region of a Ferritic Steel
,”
Eng. Fract. Mech.
,
64
(
3
), pp.
305
325
.10.1016/S0013-7944(99)00076-4
10.
Samal
,
M. K.
,
Seidenfuss
,
M.
,
Roos
,
E.
,
Dutta
,
B. K.
, and
Kushwaha
,
H. S.
,
2008
, “
Experimental and Numerical Investigation of Ductile-to-Brittle Transition in a Pressure Vessel Steel
,”
Mater. Sci. Eng.: A
,
496
(
1–2
), pp.
25
35
.10.1016/j.msea.2008.06.046
11.
Hojo
,
K.
,
Ogawa
,
N.
,
Yoshimoto
,
K.
,
Hirota
,
T.
, and
Nagoshi
,
Y.
,
2020
, “
Investigation of Temperature Dependence of Weibull Parameters of the Beremin Model in Ductile-Brittle Transition Temperature Region
,”
ASME
Paper No. PVP2020-21651.10.1115/PVP2020-21651
12.
Pineau
,
A.
, and
Pardoen
,
T.
,
2007
, “
Failure Mechanisms of Metals
,”
Comprehensive Structural Integrity Encyclopedia
, Vol.
2
, Elsevier, Amsterdam, The Netherlands, pp.
687
783
.
13.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
(
4
), pp.
389
407
.10.1007/BF00036191
14.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
,
32
(
1
), pp.
157
169
.10.1016/0001-6160(84)90213-X
15.
Needleman
,
A.
, and
Tvergaard
,
V.
,
1984
, “
An Analysis of Ductile Rupture in Notched Bars
,”
J. Mech. Phys. Solids
,
32
(
6
), pp.
461
490
.10.1016/0022-5096(84)90031-0
16.
Sun
,
D.-Z.
,
Siegele
,
D.
,
Voss
,
B.
, and
Schmitt
,
W.
,
1989
, “
Application of Local Damage Models to the Numerical Analysis of Ductile Rupture
,”
Fatigue Fract. Eng. Mater. Struct.
,
12
(
3
), pp.
201
212
.10.1111/j.1460-2695.1989.tb00527.x
17.
Chu
,
C. C.
, and
Needleman
,
A.
,
1980
, “
Void Nucleation Effects in Biaxially Stretched Sheets
,”
ASME J. Eng. Mater. Technol
,
102
(
3
), pp.
249
256
.10.1115/1.3224807
18.
Eripret
,
C.
,
Lidbury
,
D.
,
P. G.
,
Sherry
,
A.
, and
Howard
,
I.
,
1996
, “
Prediction of Fracture in the Transition Regime: Application to an A533B Pressure Vessel Steel
,”
Le J. Phys. IV
,
06
(
C6
), pp.
C6315
C6323
.10.1051/jp4:1996631
19.
Minami
,
F.
,
Katou
,
T.
, and
Jing
,
H.
,
2001
, “
Application of the Local Approach to Fracture in the Brittle-to-Ductile Transition Region of Mismatched Welds
,”
ASTM STP
,
1406
, pp.
195
213
.10.1520/STP11666S
20.
JEAC 4216
,
2015
, “
Test Method for Determination of Reference Temperature, To, of Ferritic Steels
,” The Japan Electric Association Code, Tokyo, Japan, Standard No. JEAC 4216-2015.
21.
Minami
,
F.
,
Ohata
,
M.
,
Shimanuki
,
H.
,
Handa
,
T.
,
Igi
,
S.
,
Kurihara
,
M.
,
Kawabata
,
T.
,
Yamashita
,
Y.
,
Tagawa
,
T.
, and
Hagihara
,
Y.
,
2006
, “
Method of Constraint Loss Correction of CTOD Fracture Toughness for Fracture Assessment of Steel Components
,”
Eng. Fract. Mech.
,
73
(
14
), pp.
1996
2020
.10.1016/j.engfracmech.2006.03.013
22.
Gao
,
X.
,
Ruggieri
,
C.
, and
Dodds
,
H.
,
1998
, “
Calibration of Weibull Stress Parameters Using Fracture Toughness Data
,”
Int. J. Fract.
,
92
(
2
), pp.
175
200
.10.1023/A:1007521530191
23.
Besson
,
J.
,
Steglich
,
D.
, and
Brocks
,
W.
,
2003
, “
Modeling of Plane Strain Ductile Rupture
,”
Int. J. Plast.
,
19
(
10
), pp.
1517
1541
.10.1016/S0749-6419(02)00022-0
24.
Nicak
,
T.
, and
Rempel
,
A.
,
2021
, “
Post-Test Analysis of a Large Scale Mock-Up Test Performed in the European Project ATLAS+
,”
ASME
Paper No. PVP2021-60495.10.1115/PVP2021-60495
You do not currently have access to this content.