Abstract

To investigate the thread failure issue of the top inlet pipe end of a high-pressure polyethylene reactor, a fluid–structure interaction (FSI) numerical model was developed for the reactor's top inlet pipe. Bidirectional FSI analysis revealed that, although fluid pressure pulsations are the primary cause of pipeline vibrations, asymmetric secondary flow at the double elbows induces out-of-plane structural vibrations, leading to an out-of-plane deviation of the crack locations at the threaded pipe end. A localized numerical model of the threaded straight pipe segment was developed, and the reaction forces and moments at the fixed end of the pipe segment were directly applied based on results from the FSI analysis to assess the very high cycle fatigue (VHCF) life of the structure. A parametric analysis was performed by replacing the real threads with a virtual thread structure, and the simulation results were refined to identify optimized reinforcement strategies for the inlet pipe segment. The results indicate that adding support at the end of the inlet elbow enhances the fatigue life by a factor of 4.35 relative to the original structure. Fractographic analysis using scanning electron microscopy revealed the presence of shallow nonmetallic inclusions at the crack initiation site, characterized by atypical “fish-eye” features. Based on a high-strength steel VHCF life prediction model, recommendations were provided to improve the fatigue life of the pipe segment by limiting the size of nonmetallic inclusions.

References

1.
López‐Carpy
,
B.
,
Saldívar‐Guerra
,
E.
,
Zapata‐González
,
I.
, and
García‐Franco
,
C.
,
2018
, “
Mathematical Modeling of the Molecular Weight Distribution in Low Density Polyethylene. I. Steady‐State Operation of Multizone Autoclave Reactors
,”
Macro React. Eng.
,
12
(
4
), p.
1800013
.10.1002/mren.201800013
2.
Häfele
,
M.
,
Kienle
,
A.
,
Boll
,
M.
,
Schmidt
,
C.-U.
, and
Schwibach
,
M.
,
2005
, “
Dynamic Simulation of a Tubular Reactor for the Production of Low-Density Polyethylene Using Adaptive Method of Lines
,”
J. Comput. Appl. Math.
,
183
(
2
), pp.
288
300
.10.1016/j.cam.2004.12.033
3.
Ma
,
R.
,
Shi
,
F.
,
Juan
,
M.
,
Wang
,
J.
,
Jin
,
J.
, and
Yu
,
T.
,
2023
, “
Numerical and Experimental Investigations of Particle Dampers Attached to a Pipeline System
,”
Appl. Sci.
,
13
(
24
), p.
13217
.10.3390/app132413217
4.
Ding
,
H.
, and
Ji
,
J. C.
,
2023
, “
Vibration Control of Fluid-Conveying Pipes: A State-of-the-Art Review
,”
Appl. Math. Mech. (English Ed.
),
44
(
9
), pp.
1423
1456
.10.1007/s10483-023-3023-9
5.
Zhou
,
J.
,
Chang
,
X.
,
Xiong
,
Z.
, and
Li
,
Y.
,
2022
, “
Stability and Nonlinear Vibration Analysis of Fluid-Conveying Composite Pipes With Elastic Boundary Conditions
,”
Thin-Walled Struct.
,
179
, p.
109597
.10.1016/j.tws.2022.109597
6.
Guo
,
X.
,
Zeng
,
J.
,
Ma
,
H.
,
Liu
,
S.
,
Luo
,
Z.
,
Li
,
C.
,
Han
,
Q.
, and
Wen
,
B.
,
2023
, “
Semi-Analytical Modeling and Experimental Verification of a Flexible Varying Section Disk–Blades System With Elastic Supports
,”
Thin-Walled Struct.
,
185
, p.
110563
.10.1016/j.tws.2023.110563
7.
Guo
,
X.
,
Ni
,
K.
,
Ma
,
H.
,
Zeng
,
J.
,
Wang
,
Z.
, and
Wen
,
B.
,
2021
, “
Dynamic Response Analysis of Shrouded Blades Under Impact-Friction Considering the Influence of Passive Blade Vibration
,”
J. Sound Vib.
,
503
, p.
116112
.10.1016/j.jsv.2021.116112
8.
Sazesh
,
S.
, and
Shams
,
S.
,
2019
, “
Vibration Analysis of Cantilever Pipe Conveying Fluid Under Distributed Random Excitation
,”
J. Fluids Struct.
,
87
, pp.
84
101
.10.1016/j.jfluidstructs.2019.03.018
9.
Liu
,
E.
,
Wang
,
X.
,
Zhao
,
W.
,
Su
,
Z.
, and
Chen
,
Q.
,
2021
, “
Analysis and Research on Pipeline Vibration of a Natural Gas Compressor Station and Vibration Reduction Measures
,”
Energy Fuels
,
35
(
1
), pp.
479
492
.10.1021/acs.energyfuels.0c03663
10.
Gao
,
P.
,
Zhai
,
J.
,
Yan
,
Y.
,
Han
,
Q.
,
Qu
,
F.
, and
Chen
,
X.
,
2016
, “
A Model Reduction Approach for the Vibration Analysis of Hydraulic Pipeline System in Aircraft
,”
Aerosp. Sci. Technol.
,
49
, pp.
144
153
.10.1016/j.ast.2015.12.002
11.
Zhu
,
L.
,
Jiang
,
Y.
,
Fan
,
Z.
, and
Yu
,
D.
,
2018
, “
Fatigue Life Analysis of Liquid-Filled Pipeline Under the Combined Excitation of Random Vibration and Fluid-Structure Interaction
,”
Prognostics and System Health Management Conference (PHM-Chongqing 2018)
,
P.
Ding
,
C.
Li
,
R. V.
Sanchez
, and
S.
Yang
, eds.,
IEEE
,
New York
, pp.
57
64
.
12.
Wu
,
J.
,
Sun
,
Y.
,
Su
,
M.
, and
Zhu
,
H.
,
2023
, “
Fluid-Structure Interaction and Band Gap Analysis of Periodic Composite Liquid-Filled Pipe
,”
Compos. Struct.
,
304
, p.
116444
.10.1016/j.compstruct.2022.116444
13.
Wu
,
J.
,
Su
,
M.
,
Yin
,
Z.
, and
Sun
,
Y.
,
2023
, “
Fluid-Structure Interaction Characteristics Analysis of Composite Liquid-Filled Pipeline
,”
J. Vib. Shock
,
42
, pp.
99
105
.https://jvs.sjtu.edu.cn/EN/Y2023/V42/I7/99
14.
Wu
,
J.
,
Sun
,
Y.
, and
Yin
,
Z.
,
2023
, “
Fluid-Structure Interaction and Power Flow Analysis of Fluid-Filled Branched Pipe
,”
Shipbuilding China
,
64
, pp.
253
263
.
15.
Simandjuntak
,
S.
,
Lin
,
B.
,
Affendy
,
B.
, and
Akther
,
F.
,
2021
, “
Combined Residual Stresses and Fluid-Structure Interaction Finite Element Analysis on Bent Pipes
,”
Mater. High Temp.
,
38
(
5
), pp.
351
357
.10.1080/09603409.2021.1971358
16.
Hu
,
B.
,
Zhu
,
F.-L.
,
Yu
,
D.-L.
,
Liu
,
J.-W.
,
Zhang
,
Z.-F.
,
Zhong
,
J.
, and
Wen
,
J.-H.
,
2020
, “
Impact Vibration Properties of Locally Resonant Fluid-Conveying Pipes
,”
Chin. Phys. B
,
29
(
12
), p.
124301
.10.1088/1674-1056/abb312
17.
Hu
,
B.
,
Yu
,
D.
,
Liu
,
J.
,
Zhu
,
F.
, and
Zhang
,
Z.
,
2020
, “
Shock Vibration Characteristics of Fluid-Structure Interaction Phononic Crystal Pipeline
,”
Acta Phys. Sin.
,
69
(
19
), p.
194301
.10.7498/aps.69.20200414
18.
Chen
,
Z.
,
Han
,
K.
,
Ren
,
F.
,
Zhu
,
W.
,
Lu
,
K.
,
Yang
,
H.
, and
Wang
,
W.
,
2023
, “
Influence of Transverse Vibration Induced by Fluid-Structure Interaction on Pipeline Strength
,”
Nucl. Eng. Des.
,
411
, p.
112445
.10.1016/j.nucengdes.2023.112445
19.
Liu
,
S.
,
Wu
,
X.
,
Peng
,
X.
,
Chen
,
J.
, and
Wang
,
C.
,
2021
, “
Analysis of Stress-Strain Responses of a Liquid-Filled Pipe Based on Two-Way Fluid-Structure Interaction
,”
J. Vib. Shock
,
40
, pp.
73
79
.https://jvs.sjtu.edu.cn/EN/Y2021/V40/I20/73
20.
Wu
,
J.
,
Li
,
C.
,
Zheng
,
S.
, and
Gao
,
J.
,
2019
, “
Study on Fluid‐Structure Coupling Vibration of Compressor Pipeline
,”
Shock Vib.
,
2019
(
1
), p.
8624324
.10.1155/2019/8624324
21.
Sharma
,
A.
,
Oh
,
M. C.
, and
Ahn
,
B.
,
2020
, “
Recent Advances in Very High Cycle Fatigue Behavior of Metals and Alloys—A Review,”
Metals
,
10
(
9
), p.
1200
.10.3390/met10091200
22.
Karakaş
,
Ö.
,
Kardeş
,
F. B.
,
Foti
,
P.
, and
Berto
,
F.
,
2023
, “
An Overview of Factors Affecting High‐Cycle Fatigue of Additive Manufacturing Metals
,”
Fatigue Fract. Eng. Mater. Struct.
,
46
(
5
), pp.
1649
1668
.10.1111/ffe.13967
23.
Schönbauer
,
B. M.
,
Ghosh
,
S.
,
Kömi
,
J.
,
Frondelius
,
T.
, and
Mayer
,
H.
,
2021
, “
Influence of Small Defects and Nonmetallic Inclusions on the High and Very High Cycle Fatigue Strength of an Ultrahigh‐Strength Steel
,”
Fatigue Fract. Eng. Mater. Struct.
,
44
(
11
), pp.
2990
3007
.10.1111/ffe.13534
24.
Kong
,
L.
,
2017
,
Engineering Fluid Mechanics
,
China Electric Power Press
,
Beijing, China
.
25.
American Petroleum Institute
,
2007
,
Reciprocating Compressors for Petroleum: API 618-2007
,
Chemical and Gas Industry
,
Washington, DC
.
26.
ASME
,
2019
,
ASME Boiler and Pressure Vessel Code, Section VIII, Division 3: Alternative Rules for Construction of High-Pressure Vessels
,
American Society of Mechanical Engineers
,
New York
, Standard No. ASME BPVC.VIII.3-2019.
27.
Hong
,
Y.
,
Sun
,
C.
, and
Liu
,
X.
,
2018
, “
A Review on Mechanisms and Models for Very-High-Cycle Fatigue of Metallic Materials
,”
Adv. Mech.
,
48
, pp.
1
65
.10.6052/1000-0992-17-002
28.
Sun
,
C.
,
Lei
,
Z.
,
Xie
,
J.
, and
Hong
,
Y.
,
2013
, “
Effects of Inclusion Size and Stress Ratio on Fatigue Strength for High-Strength Steels With Fish-Eye Mode Failure
,”
Int. J. Fatigue
,
48
, pp.
19
27
.10.1016/j.ijfatigue.2012.12.004
You do not currently have access to this content.