Abstract

In this study, a fuzzy artificial intelligence approach is utilized to predict the erosion rate of reinforced ebonite composite materials with carbon fiber owing to the significant accuracy of soft computing techniques. Experimental data were used to predict the erosion rate with respect to the input testing conditions, namely, impact velocity, impingement angle, erodent size, and stand-off distance. The size of the erosive element of randomly shaped sand particles (silicon dioxide) is set between 300 and 600 μm. Other input process parameters, such as the impact velocity between 30 and 50 m/s, the impingement angle between 30° and 90°, and the stand-off distance between 15 and 25 mm, are selected. The consistency between the experimental and fuzzy logic model values, with a 94.45 % accuracy, signifies that the proposed fuzzy logic model is suitable for predicting the erosion rate of reinforced ebonite composite materials. The maximum erosion rate is obtained between a 50° and 60° impingement angle. Morphological images are analyzed by scanning electron microscopy to elucidate the erosion mechanisms.

References

1.
Arjula
,
S.
,
Harsha
,
A. P.
, and
Ghosh
,
M. K.
, “
Solid-Particle Erosion Behavior of High-Performance Thermoplastic Polymers
,”
J. Mater. Sci.
, Vol. 
43
, No. 
6
,
2008
, pp. 
1757
1768
, https://doi.org/10.1007/s10853-007-2405-0
2.
Harsha
,
A. P.
,
Tewari
,
U. S.
, and
Venkatraman
,
B.
, “
Solid Particle Erosion Behaviour of Various Polyaryletherketone Composites
,”
Wear
, Vol. 
254
, Nos. 
7–8
,
2003
, pp. 
693
712
, https://doi.org/10.1016/S0043-1648(03)00143-1
3.
Hager
,
A.
,
Friedrich
,
K.
, and
Dzenis
,
Y.
, “
Study of Erosion Wear of Advanced Polymer Composites
,” presented at the
Tenth International Conference on Composite Materials (ICCM-10)
,
Whistler
,
Canada
,
1995
.
4.
Pool
,
K. V.
,
Dharan
,
C. K. H.
, and
Finnie
,
I.
, “
Erosive Wear of Composite Materials
,”
Wear
, Vol. 
107
, No. 
1
,
1986
, pp. 
1
12
, https://doi.org/10.1016/0043-1648(86)90043-8
5.
Debnath
,
U. K.
,
Chowdhury
,
M. A.
,
Nuruzzaman
,
D. M.
,
Rahman
,
M. M.
,
Roy
,
B. K.
,
Kowser
,
M. A.
, and
Islam
,
M. M.,
Erosion Characteristics of Teflon under Different Operating Conditions
,”
J. Polym. Eng.
, Vol. 
35
, No. 
9
,
2015
, pp. 
889
904
, https://doi.org/10.1515/polyeng-2014-0359
6.
Debnath
,
U. K.
,
Chowdhury
,
M. A.
, and
Nuruzzaman
,
D. M.
, “
The Experimental Characteristics and Evaluation of Nylon-12 in Erosion Process
,”
J. Test. Eval.
, Vol. 
45
, No. 
3
,
2016
, pp. 
773
787
, https://doi.org/10.1520/JTE20150154
7.
Tewari
,
U. S.
,
Harsha
,
A. P.
,
Häger
,
A. M.
, and
Friedrich
,
K.
, “
Solid Particle Erosion of Carbon Fibre– and Glass Fibre–Epoxy Composites
,”
Compos. Sci. Technol.
, Vol. 
63
, Nos. 
3–4
,
2003
, pp. 
549
557
, https://doi.org/10.1016/S0266-3538(02)00210-5
8.
Bagci
,
M.
and
Imrek
,
H.
, “
Application of Taguchi Method on Optimization of Testing Parameters for Erosion of Glass Fiber Reinforced Epoxy Composite Materials
,”
Mater. Des.
, Vol. 
46
,
2013
, pp. 
706
712
, https://doi.org/10.1016/j.matdes.2012.11.024
9.
Bagci
,
M.
, “
Determination of Solid Particle Erosion with Taguchi Optimization Approach of Hybrid Composite Systems
,”
Tribol. Int.
, Vol. 
94
,
2016
, pp. 
336
345
, https://doi.org/10.1016/j.triboint.2015.09.032
10.
Bai
,
Y.
and
Wang
,
D.
, “
Fundamentals of Fuzzy Logic Control—Fuzzy Sets, Fuzzy Rules and Defuzzifications
,”
Advanced Fuzzy Logic Technologies in Industrial Applications
,
Springer London Ltd
,
London, UK
,
2006
, pp. 
17
36
.
11.
Jang
,
J.-S. R.
, “
ANFIS: Adaptive-Network-Based Fuzzy Inference System
,”
IEEE Trans. Syst. Man Cybern.
, Vol. 
23
, No. 
3
,
1993
, pp. 
665
685
, https://doi.org/10.1109/21.256541
12.
Petković
,
D.
,
Issa
,
M.
,
Pavlović
,
N. D.
,
Pavlović
,
N. T.
, and
Zentner
,
L.
, “
Adaptive Neuro-Fuzzy Estimation of Conductive Silicone Rubber Mechanical Properties
,”
Expert Syst. Appl.
, Vol. 
39
, No. 
10
,
2012
, pp. 
9477
9482
, https://doi.org/10.1016/j.eswa.2012.02.111
13.
Petković
,
D.
,
Ćojbašič
,
Ž
., and
Nikolić
,
V.
, “
Adaptive Neuro-Fuzzy Approach for Wind Turbine Power Coefficient Estimation
,”
Renewable Sustainable Energy Rev.
, Vol. 
28
,
2013
, pp. 
191
195
, https://doi.org/10.1016/j.rser.2013.07.049
14.
Shamshirband
,
S.
,
Malvandi
,
A.
,
Karimipour
,
A.
,
Goodarzi
,
M.
,
Afrand
,
M.
,
Petković
,
D.
,
Daharai
,
M.
, and
Mahmoodian
,
N.
, “
Performance Investigation of Micro- and Nano-Sized Particle Erosion in a 90° Elbow Using an ANFIS Model
,”
Powder Technol.
, Vol. 
284
,
2015
, pp. 
336
343
, https://doi.org/10.1016/j.powtec.2015.06.073
15.
Ross
,
T. J.
,
Fuzzy Logic with Engineering Applications
,
John Wiley & Sons Ltd
,
Chichester
,
UK
,
2010
, 607p.
16.
Unune
,
D. R.
,
Barzani
,
M. M.
,
Mohite
,
S. S.
, and
Mali
,
H. S.
, “
Fuzzy Logic-Based Model for Predicting Material Removal Rate and Average Surface Roughness of Machined Nimonic 80A Using Abrasive-Mixed Electro-Discharge Diamond Surface Grinding
,”
Neural Comput. Appl.
, Vol. 
29
, No. 
9
,
2018
, pp. 
647
662
, https://doi.org/10.1007/s00521-016-2581-4
17.
Syahputra
,
R.
, “
Application of Neuro-Fuzzy Method for Prediction of Vehicle of Fuel Consumption
,”
J. Theor. Appl. Inf. Technol.
, Vol. 
86
, No. 
1
,
2016
, pp. 
138
149
.
18.
Zhang
,
N.
,
Zhou
,
K.
, and
Du
,
X.
, “
Application of Fuzzy Logic and Fuzzy AHP to Mineral Prospectivity Mapping of Porphyry and Hydrothermal Vein Copper Deposits in the Dananhu-Tousuquan Island Arc, Xinjiang, NW China
,”
J. Afr. Earth Sci.
, Vol. 
128
,
2017
, pp. 
84
96
, https://doi.org/10.1016/j.jafrearsci.2016.12.011
19.
Plebankiewicz
,
E.
, “
Preface of the ‘Symposium on Application of Fuzzy Logic and Neural Networks in Construction Management,’
AIP Conf. Proc
., Vol. 
1558
,
2013
, p. 1293.
20.
Debnath
,
U. K.
,
Chowdhury
,
M. A.
, and
Nuruzzaman
,
D. M.
, “
Study of Erosion Performance and Characterization of Ebonite Reinforced with Carbon Fibers
,”
Mater. Perform. Charact.
, Vol. 
5
, No. 
1
,
2016
, pp. 
312
329
, https://doi.org/10.1520/MPC20160091
21.
Zadeh
,
L. A.
,
Fu
,
K.-S.
, and
Tanaka
,
K.
,
Fuzzy Sets and Their Applications to Cognitive and Decision Processes: Proceedings of the U.S.–Japan Seminar on Fuzzy Sets and Their Applications, Held at the University of California, Berkeley, California, July 1–4, 1974
,
Academic Press
,
New York, NY
,
1975
, 506p.
22.
Mamdani
,
E. H.
and
Assilian
,
S.
, “
An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller
,”
Int. J. Man Mach. Stud.
, Vol. 
7
, No. 
1
,
1975
, pp. 
1
13
, https://doi.org/10.1016/S0020-7373(75)80002-2
23.
Kumar
,
A.
,
Maheshwari
,
S.
,
Sharma
,
C.
, and
Beri
,
N.
Analysis of Machining Characteristics in Additive Mixed Electric Discharge Machining of Nickel-Based Super Alloy Inconel 718
,”
Mater. Manuf. Process.
, Vol. 
26
, No. 
8
,
2011
, pp. 
1011
1018
, https://doi.org/10.1080/10426914.2010.527415
24.
Zalnezhad
,
E.
and
Sarhan
,
A. A.
, “
A Fuzzy Logic Predictive Model for Better Surface Roughness of Ti–TiN Coating on AL7075-T6 Alloy for Longer Fretting Fatigue Life
,”
Measurement
, Vol. 
49
,
2014
, pp. 
256
265
, https://doi.org/10.1016/j.measurement.2013.11.042
25.
Kumar
,
S.
,
Satapathy
,
B. K.
, and
Patnaik
,
A.
, “
Thermo-Mechanical Correlations to Erosion Performance of Short Carbon Fibre Reinforced Vinyl Ester Resin Composites
,”
Mater. Des.
, Vol. 
32
, No. 
4
,
2011
, pp. 
2260
2268
, https://doi.org/10.1016/j.matdes.2010.11.019
26.
Sundararajan
,
G.
and
Roy
,
M.
, “
Solid Particle Erosion Behaviour of Metallic Materials at Room and Elevated Temperatures
,”
Tribol. Int.
, Vol. 
30
, No. 
5
,
1997
, pp. 
339
359
, https://doi.org/10.1016/S0301-679X(96)00064-3
27.
Topçu
,
İ. B.
and
Sarıdemir
,
M.
, “
Prediction of Compressive Strength of Concrete Containing Fly Ash Using Artificial Neural Networks and Fuzzy Logic
,”
Comput. Mater. Sci.
, Vol. 
41
, No. 
3
,
2008
, pp. 
305
311
, https://doi.org/10.1016/j.commatsci.2007.04.009
This content is only available via PDF.
You do not currently have access to this content.