Abstract

Excellent current-carrying tribological properties including the low-friction, high anti-wear, high current-carrying efficiency, and stability are important for the current-carrying application in transmitting electrical signals and power. Here, the Cu/graphene composites with graphene uniformly distributed in Cu matrix were successfully prepared by combining the electroless plating process and powder metallurgy process. The current-carrying tribological properties including friction, wear, and electrical stability of the Cu/graphene composites with brass pairs were investigated by varying normal applied load and sliding speed under multiple applied voltages. The friction reduction and anti-wear properties of Cu/graphene composites were enhanced by the introduction of graphene. The friction coefficient of the Cu/graphene composites keeps stable under current-carrying and non-current-carrying conditions due to the benefit of the graphene enhancement to Cu. The graphene on wear surface reduces friction force and wear. The current-carrying efficiency and stability increased with the increase of applied load but decreased with increasing sliding speed. The contact stability increased with applied load, while high sliding speed caused the drastic vibration of sliding contact. The studies can provide a beneficial guideline for the current-carrying applications of Cu/graphene composites to reduce the friction and wear.

References

References
1.
Braterskaya
,
G. N.
, and
Zatovskii
,
V. G.
,
1984
, “
Wear Resistance of Sliding Electrical Contacts of Silver-Base Composite Materials
,”
Sov. Powder Metall. Met. Ceram.
,
23
(
5
), pp.
397
401
. 10.1007/BF00796608
2.
Zhang
,
L.
,
Xiao
,
J.
, and
Zhou
,
K.
,
2012
, “
Sliding Wear Behavior of Silver-Molybdenum Disulfide Composite
,”
Tribol. Trans.
,
55
(
4
), pp.
473
480
. 10.1080/10402004.2012.671452
3.
Xie
,
X.-l.
,
Zhang
,
L.
,
Xiao
,
J.-k.
,
Qian
,
Z.-y.
,
Zhang
,
T.
, and
Zhou
,
K.-c.
,
2015
, “
Sliding Electrical Contact Behavior of AuAgCu Brush on Au Plating
,”
Trans. Nonferrous Met. Soc. China
,
25
(
9
), pp.
3029
3036
. 10.1016/S1003-6326(15)63930-9
4.
Selvakumar
,
N.
, and
Vettivel
,
S. C.
,
2013
, “
Thermal, Electrical and Wear Behavior of Sintered Cu-W Nanocomposite
,”
Mater. Des.
,
46
, pp.
16
25
. 10.1016/j.matdes.2012.09.055
5.
Casstevens
,
J. M.
,
Rylander
,
H. G.
, and
Eliezer
,
Z.
,
1978
, “
Friction and Wear Properties of Two Types of Copper—Graphite Brushes Under Severe Sliding Conditions
,”
Wear
,
50
(
2
), pp.
371
381
. 10.1016/0043-1648(78)90082-0
6.
Du
,
S.
,
Zhao
,
F.
, and
Zhang
,
Y.
,
2012
, “
Friction and Wear Behavior of Copper-Graphite Composite Material in High-Speed Sliding With Current
,”
Emerg. Mater. Mech. Appl.
,
487
, pp.
411
415
. 10.4028/www.scientific.net/amr.487.411
7.
Yin
,
J.
,
Zhang
,
H.
,
Tan
,
C.
, and
Xiong
,
X.
,
2014
, “
Effect of Heat Treatment Temperature on Sliding Wear Behaviour of C/C-Cu Composites Under Electric Current
,”
Wear
,
312
(
1–2
), pp.
91
95
. 10.1016/j.wear.2014.01.001
8.
Kim
,
K. T.
,
Cha
,
S.
, and
Hong
,
S. H.
,
2007
, “
Hardness and Wear Resistance of Carbon Nanotube Reinforced Cu Matrix Nanocomposites
,”
Mater. Sci. Eng., A
,
449
, pp.
46
50
. 10.1016/j.msea.2006.02.310
9.
Zhao
,
H.
,
Barber
,
G. C.
, and
Liu
,
J.
,
2001
, “
Friction and Wear in High Speed Sliding With and Without Electrical Current
,”
Wear
,
249
(
5–6
), pp.
409
414
. 10.1016/S0043-1648(01)00545-2
10.
Moustafa
,
S. F.
,
El-Badry
,
S. A.
,
Sanad
,
A. M.
, and
Kieback
,
B.
,
2002
, “
Friction and Wear of Copper-Graphite Composites Made With Cu-Coated and Uncoated Graphite Powders
,”
Wear
,
253
(
7–8
), pp.
699
710
. 10.1016/S0043-1648(02)00038-8
11.
Xiao
,
J.-K.
,
Zhang
,
L.
,
Zhou
,
K.-C.
, and
Wang
,
X.-P.
,
2013
, “
Microscratch Behavior of Copper-Graphite Composites
,”
Tribol. Int.
,
57
, pp.
38
45
. 10.1016/j.triboint.2012.07.004
12.
Grandin
,
M.
, and
Wiklund
,
U.
,
2018
, “
Wear Phenomena and Tribofilm Formation of Copper/Copper-Graphite Sliding Electrical Contact Materials
,”
Wear
,
398
, pp.
227
235
. 10.1016/j.wear.2017.12.012
13.
Cho
,
K. H.
,
Hong
,
U. S.
,
Lee
,
K. S.
, and
Jang
,
H.
,
2007
, “
Tribological Properties and Electrical Signal Transmission of Copper-Graphite Composites
,”
Tribol. Lett.
,
27
(
3
), pp.
301
306
. 10.1007/s11249-007-9234-9
14.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
. 10.1126/science.1157996
15.
Berman
,
D.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2013
, “
Few Layer Graphene to Reduce Wear and Friction on Sliding Steel Surfaces
,”
Carbon
,
54
, pp.
454
459
. 10.1016/j.carbon.2012.11.061
16.
Huang
,
P.
,
Guo
,
D.
,
Xie
,
G.
, and
Li
,
J.
,
2017
, “
Softened Mechanical Properties of Graphene Induced by Electric Field
,”
Nano Lett.
,
17
(
10
), pp.
6280
6286
. 10.1021/acs.nanolett.7b02965
17.
Hu
,
X.
,
Lee
,
J.
,
Berman
,
D.
, and
Martini
,
A.
,
2018
, “
Substrate Effect on Electrical Conductance at a Nanoasperity-Graphene Contact
,”
Carbon
,
137
, pp.
118
124
. 10.1016/j.carbon.2018.05.028
18.
Ruffino
,
F.
,
Meli
,
G.
, and
Grimaldi
,
M. G.
,
2016
, “
Nanoscale Electrical Characteristics of Metal (Au, Pd)-Graphene-Metal (Cu) Contacts
,”
Solid State Commun.
,
225
, pp.
1
6
. 10.1016/j.ssc.2015.10.010
19.
Braunovic
,
M.
,
Myshkin
,
N. K.
, and
Konchits
,
V. V.
,
2006
,
Electrical Contacts: Fundamentals, Applications and Technology
,
CRC Press
,
Boca Raton, FL
.
20.
Guo
,
F. Y.
,
Jia
,
W.
,
Chen
,
Z. H.
,
Wang
,
Z. Y.
,
Yin
,
F.
,
Liu
,
Y. T.
,
Xue
,
Y. M.
, and
Ieee
,
2010
, “
Experimental Research on Current-Carrying and Friction Characteristics of Sliding Electrical Contact
,”
56th IEEE Holm Conference on Electrical Contacts/25th International Conference on Electrical Contacts, Charleston, SC
, pp.
424
429
.
21.
Ragnar
,
H.
,
1967
,
Electric Contacts
,
Springer
,
Berlin/Heidelberg
.
You do not currently have access to this content.