Abstract

Surfaces only characterized by a roughness Ra or Sa may have a totally different surface texture and include complex patterns such as grooves, dimples, or a mirror-polish. Here, the bearing ratio is proposed as an additional characterization measure to determine the sliding performance of a steel–ice friction pair. Different steel surfaces were produced by milling, shot blasting, and scratching, followed by texture assessment with a stylus type three-dimensional (3D) profilometer. The bearing ratio and other 3D roughness parameters were determined. Tribology experiments involved a 3 m long inclined plane tribometer and the speed measured at four points during the sliding experiment. Correlation between the steel sliding speed and the bearing ratio was observed under two different regimes: at warmer conditions and at colder conditions. Experiment 1 depicting warmer conditions exhibited a relative humidity of 64%, an air temperature of −2 °C, and an ice temperature of −9 °C. Experiment 2 for colder conditions showed a relative humidity of 78%, an air temperature of 1 °C, and an ice temperature of −4 °C. The sliding speed correlated with the bearing ratio in these two conditions showing −0.91 and −0.96, respectively. A strong correlation between the sliding speed and the bearing ratio shows the value of the bearing ratio as an additional surface characteristic for considering larger surface features.

References

References
1.
Böttcher
,
R.
,
Seidelmann
,
M.
, and
Scherge
,
M.
,
2017
, “
Sliding of UHMWPE on Ice: Experiment vs. Modeling
,”
Cold Reg. Sci. Technol.
,
141
, pp.
171
180
. 10.1016/j.coldregions.2017.06.010
2.
Kietzig
,
A. M.
,
Hatzikiriakos
,
S. G.
, and
Englezos
,
P.
,
2009
, “
Ice Friction: The Effects of Surface Roughness, Structure, and Hydrophobicity
,”
J. Appl. Phys.
,
106
(
2
), p.
024303
. 10.1063/1.3173346
3.
Rohm
,
S.
,
Hasler
,
M.
,
Knoflach
,
C.
,
van Putten
,
J.
,
Unterberger
,
S. H.
,
Schindelwig
,
K.
,
Lackner
,
R.
, and
Nachbauer
,
W.
,
2015
, “
Friction Between Steel and Snow in Dependence of the Steel Roughness
,”
Tribol. Lett.
,
59
(
1
), p.
27
. 10.1007/s11249-015-0554-x
4.
Spagni
,
A.
,
Berardo
,
A.
,
Marchetto
,
D.
,
Gualtieri
,
E.
,
Pugno
,
N. M.
, and
Valeri
,
S.
,
2016
, “
Friction of Rough Surfaces on Ice: Experiments and Modeling
,”
Wear
,
368–369
, pp.
258
266
. 10.1016/j.wear.2016.10.001
5.
Jansons
,
E.
,
Lungevics
,
J.
, and
Gross
,
K. A.
,
2016
, “
Surface Roughness Measure That Best Correlates to Ease of Sliding
,”
Proceedings of 15th International Scientific Conference "Engineering for Rural Development"
,
15
, pp.
687
695
. 1691-5976
6.
Dai
,
W.
,
Alkahtani
,
M.
,
Hemmer
,
P. R.
, and
Liang
,
H.
,
2019
, “
Drag-Reduction of 3D Printed Shark-Skin-Like Surfaces
,”
Friction
,
7
(
6
), pp.
603
612
. 10.1007/s40544-018-0246-2
7.
De-yuan
,
Z.
,
Yue-hao
,
L. U. O.
,
Xiang
,
L. I.
, and
Hua-wei
,
C.
,
2011
, “
Numerical Simulation and Experimental Study of Drag-Reducing Surface of a Real Shark Skin
,”
J. Hydrodyn.
,
23
(
2
), pp.
204
211
. 10.1016/S1001-6058(10)60105-9
8.
Dean
,
B.
, and
Bhushan
,
B.
,
2010
, “
Shark-Skin Surfaces for Fluid-Drag Reduction in Turbulent Flow: A Review
,”
Trans. R. Soc. A
,
368
(
1929
), pp.
4775
4806
. 10.1098/rsta.2010.0201
9.
Walsh
,
M. J.
,
1983
, “
Riblets as a Viscous Drag Reduction Technique
,”
AIAA J.
,
21
(
4
), pp.
485
486
. 10.2514/3.60126
10.
Döppenschmidt
,
A.
, and
Butt
,
H.-J.
,
2000
, “
Measuring the Thickness of the Liquid-Like Layer on Ice Surfaces With Atomic Force Microscopy
,”
Langmuir
,
16
(
16
), pp.
6709
6714
. 10.1021/la990799w
11.
Rosenberg
,
R.
,
2005
, “
Why Is Ice Slippery?
,”
Phys. Today
,
58
(
12
), pp.
50
54
. 10.1063/1.2169444
12.
Kietzig
,
A. M.
,
Hatzikiriakos
,
S. G.
, and
Englezos
,
P.
,
2010
, “
Physics of Ice Friction
,”
J. Appl. Phys.
,
107
(
8
), p.
081101
. 10.1063/1.3340792
13.
Bixler
,
G.
, and
Bhushan
,
B.
,
2012
, “
Bioinspired Rice Leaf and Butterfly Wing Surface Structures Combining Shark Skin and Lotus Effects
,”
Soft Matter
,
8
(
44
), pp.
11271
11284
. 10.1039/c2sm26655e
14.
Scherge
,
M.
,
Böttcher
,
R.
,
Spagni
,
A.
, and
Marchetto
,
D.
,
2018
, “
High-Speed Measurements of Steel–Ice Friction: Experiment vs. Calculation
,”
Lubricants
,
6
(
1
), p.
26
. 10.3390/lubricants6010026
15.
Sukhorukov
,
S.
, and
Marchenko
,
A.
,
2014
, “
Geometrical Stick-Slip Between Ice and Steel
,”
Cold Reg. Sci. Technol.
,
100
, pp.
8
19
. 10.1016/j.coldregions.2013.12.007
16.
Baurle
,
L.
,
Kaempfer
,
T. U.
,
Szabo
,
D.
, and
Spencer
,
N. D.
,
2007
, “
Sliding Friction of Polyethylene on Snow and Ice: Contact Area and Modeling
,”
Cold Reg. Sci. Technol.
,
47
(
3
), pp.
276
289
. 10.1016/j.coldregions.2006.10.005
17.
Ducret
,
S.
,
Zahouani
,
H.
,
Midol
,
A.
,
Lanteri
,
P.
, and
Mathia
,
T. G.
,
2005
, “
Friction and Abrasive Wear of UHWMPE Sliding on Ice
,”
Wear
,
258
(
1–4
), pp.
26
31
. 10.1016/j.wear.2004.09.026
18.
Velkavrh
,
L.
,
Jansons
,
K.
, and
Voyer
,
A.
,
2019
, “
The Influence of Isotropic Surface Roughness of Steel Sliders on Ice Friction Under Different Testing Conditions
,”
Lubricants
,
7
(
12
), p.
106
. 10.3390/lubricants7120106
You do not currently have access to this content.