Abstract

In this work, we explore how uncertainty in component dimensions affects final product tolerances for warheads. We focus on quantifying uncertainties arising from the machining process and examine how they influence the final weight and center of mass (COM). We begin by deriving analytical forms for the quantities of interest (QoI) based on the fundamentals of three-dimensional integration. The input parameter space is then characterized by assumed statistical distributions, determined by knowledge of the machining process. From here, a Monte Carlo (MC) approach is implemented using matlab's ndgrid to determine resulting distributions on the QoI. In doing so, we show the likelihood of meeting final product requirements, based on our knowledge of uncertainties in the warhead components. This technique is presented in a general form to provide a tool for quantifying uncertainty for warheads of varying geometries.

References

References
1.
Chase
,
K.
,
Greenwood
,
W.
,
Loosli
,
B.
, and
Hauglund
,
L.
,
1990
, “
Least Cost Tolerance Allocation for Mechanical Assemblies With Automated Process Selection
,”
Manuf. Rev.
,
3
(
1
), pp.
49
59
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.5463&rep=rep1&type=pdf
2.
Choi
,
H.
,
Park
,
M.
, and
Salisbury
,
E.
,
2000
, “
Optimal Tolerance Allocation With Loss Functions
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
529
535
.10.1115/1.1285918
3.
Ngoi
,
B.
, and
Min
,
O.
,
1999
, “
Optimum Tolerance Allocation in Assembly
,”
Int. J. Adv. Manuf. Technol.
,
15
(
9
), pp.
660
665
.10.1007/s001700050116
4.
Haq
,
A. N.
,
Sivakumar
,
K.
,
Saravanan
,
R.
, and
Muthiah
,
V.
,
2005
, “
Tolerance Design Optimization of Machine Elements Using Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
25
(
3–4
), pp.
385
391
.10.1007/s00170-003-1855-z
5.
Ji
,
S.
,
Li
,
X.
,
Ma
,
Y.
, and
Cai
,
H.
,
2002
, “
Optimal Tolerance Allocation Based on Fuzzy Comprehensive Evaluation and Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
16
, p.
461
.10.1007/s001700070053
6.
Zhang
,
C.
, and
Wang
,
H.
,
1993
, “
Integrated Tolerance Optimisation With Simulated Annealing
,”
Int. J. Adv. Manuf. Technol.
,
8
(
3
), pp.
167
174
.10.1007/BF01749907
7.
Wu
,
F.
,
Dantan
,
J.
,
Etienne
,
A.
,
Siadat
,
A.
, and
Martin
,
P.
,
2009
, “
Improved Algorithm for Tolerance Allocation Based on Monte Carlo Simulation and Discrete Optimization
,”
Comput. Ind. Eng.
,
56
(
4
), pp.
1402
1413
.10.1016/j.cie.2008.09.005
8.
Benzaken
,
J.
,
Doostan
,
A.
, and
Evans
,
J.
,
2019
, “
Physics-Informed Tolerance Allocation: A Surrogate-Based Framework for the Control of Geometric Variation on System Performance
,” arXiv.
9.
Heling
,
B.
,
Aschenbrenner
,
A.
,
Walter
,
M.
, and
Wartzack
,
S.
,
2016
, “
On Connected Tolerances in Statistical Tolerance-Cost-Optimization of Assemblies With Interrelated Dimension Chains
,”
Procedia CIRP
,
43
, pp.
262
267
.10.1016/j.procir.2016.02.031
10.
Smith
,
R.
,
2013
,
Uncertainty Quantification: Theory, Implementation, and Applications
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
11.
Hess
,
K.
,
1991
,
Monte Carlo Device Simulation: Full Band and Beyond
,
Kluwer Academic Publishers
,
Norwell, MA
.
12.
Copyright
,
F. E.
,
2014
,
Webster's New World College Dictionary
,
Houghton Mifflin Harcourt Publishing Company
,
Boston, MA
.
13.
Lee
,
S.
,
2013
, “
Contemporary American Military Technology and North Korea's Hard and Deeply Buried Targets (HDBTS)
,”
Compens. Strategy
,
32
(
5
), pp.
387
401
.10.1080/01495933.2013.840204
14.
Bell
,
D.
,
2008
, “
Bunker Busting and Bunker Mentalities, or is It Safe to Be Underground?
,”
South Atl. Q.
,
107
(
2
), pp.
213
229
.10.1215/00382876-2007-063
15.
The MathWorks, Inc.
,
2018
, “MATLAB Version 9.4.0.813654 (R2018a),”
The MathWorks
,
Natick, MA
.
16.
Donovan
,
D.
,
Burrage
,
K.
,
Burrage
,
P.
,
McCourt
,
T.
,
Thompson
,
B.
, and
Yazici
,
E.
,
2018
, “
Estimates of the Coverage of Parameter Space by Latin Hypercube and Orthogonal Array-Based Sampling
,”
Appl. Math. Modell.
,
57
, pp.
553
564
.10.1016/j.apm.2017.11.036
17.
Manteufel
,
R.
,
2000
, “
Evaluating the Convergence of Latin Hypercube Sampling
,”
AIAA
Paper No. 2000-1636. 10.2514/6.2000-1636
18.
Birkbeck
,
N.
,
Levesque
,
J.
, and
Amaral
,
J. N.
,
2007
, “
A Dimension Abstraction Approach to Vectorization in Matlab
,”
International Symposium on Code Generation and Optimization (CGO'07)
,
San Jose, CA
,
Mar.
, pp.
115
130
.
19.
Anton
,
H.
,
Bivens
,
I.
, and
Davis
,
S.
,
2012
,
Calculus
, 10th ed.,
Wiley
,
Hoboken, NJ
.
20.
Waterloo Maple, Inc.
,
2018
, “
Maplesolft 1298750
,”
Waterloo Maple
,
Waterloo, Canada
.
21.
Dassault Systemes Solid Works Corporation
,
2019
, “
Service Pack 3.0
,”
Dassault Systemes Solid Works Corporation
,
Waltham, MA
.
You do not currently have access to this content.