Abstract

The Coffin–Manson–Basquin–Haford (CMBH) model is a well-accepted strain-life relationship to model fatigue life as a function of applied strain. In this paper, we propose a nonstationary uncertainty model for the CMBH model, alongside a Bayesian framework for model calibration and estimation of confidence and prediction intervals. Using Inconel 617 coupon test data, we compared our approach to traditional stationary variance models. The proposed uncertainty model successfully captures the fact that the variance of strain amplitude decreases with increasing fatigue life. Additionally, a discussion on how to use the proposed Bayesian framework to compensate for the lack of data by using prior information coming from similar alloys is also presented considering Hastealloy-X and Inconel 617 coupon data.

References

References
1.
Dowling
,
N. E.
,
2012
,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue
,
Pearson
,
Boston, MA
.
2.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
,
2000
,
Metal Fatigue in Engineering
,
Wiley
,
New York
.
3.
Fatemi
,
A.
, and
Yang
,
L.
,
1998
, “
Cumulative Fatigue Damage and Life Prediction Theories: A Survey of the State of the Art for Homogeneous Materials
,”
Int. J. Fatigue
,
20
(
1
), pp.
9
34
.10.1016/S0142-1123(97)00081-9
4.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.10.1115/1.3209132
5.
Su
,
S.
,
Akkara
,
F. J.
,
Thaper
,
R.
,
Alkhazali
,
A.
,
Hamasha
,
M.
, and
Hamasha
,
S.
,
2019
, “
A State-of-the-Art Review of Fatigue Life Prediction Models for Solder Joint
,”
ASME J. Electron. Packag.
,
141
(
4
), p.
040802
.10.1115/1.4043405
6.
Pascual
,
F. G.
, and
Meeker
,
W. Q.
,
1999
, “
Estimating Fatigue Curves With the Random Fatigue-Limit Model
,”
Technometrics
,
41
(
4
), pp.
277
289
.10.1080/00401706.1999.10485925
7.
Meggiolaro
,
M.
, and
Castro
,
J.
,
2004
, “
Statistical Evaluation of Strain-Life Fatigue Crack Initiation Predictions
,”
Int. J. Fatigue
,
26
(
5
), pp.
463
476
.10.1016/j.ijfatigue.2003.10.003
8.
Koelzow
,
F.
,
Kontermann
,
C.
,
Helbig
,
K.
, and
Jarmowski
,
D.
,
2020
, “
Probabilistic Lifetime Assessment Approach of 2%-Cr Steel Considering Material and Loading Profile Scatter
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011008
.10.1115/1.4045276
9.
Horstman
,
R.
,
Peters
,
K. A.
,
Gebremedhin
,
S.
,
Meltzer
,
R. L.
,
Bruce Vieth
,
M.
, and
Nelson
,
W.
,
1984
, “
Fitting of Fatigue Curves With Nonconstant Standard Deviation to Data With Runouts
,”
J. Test. Eval.
,
12
(
2
), p.
69
.10.1520/JTE10700J
10.
Petersen
,
D. R.
,
Link
,
R. E.
,
Pascual
,
F. G.
, and
Meeker
,
W. Q.
,
1997
, “
Analysis of Fatigue Data With Runouts Based on a Model With Nonconstant Standard Deviation and a Fatigue Limit Parameter
,”
J. Test. Eval.
,
25
(
3
), p.
292
.10.1520/JTE11341J
11.
Basquin
,
O. H.
,
1910
, “
The Exponential Law of Endurance Tests
,”
Am. Soc. Test. Mater. Proc.
,
10
, pp.
625
630
.
12.
Coffin
,
L.
,
1959
, “
The Cyclic Straining and Fatigue of Metals
,”
Trans. Met. Ing. Soc, AIME
,
215
, pp.
794
806
.
13.
Manson
,
S. S.
, and
Hirschberg
,
M. H.
,
1964
, “
Fatigue: An Interdisciplinary Approach
,”
Proceedings of the X Sagamare Army Materials Research Conference
,
Raquette Lake, NY
,
Aug. 13–16
, p.
133
.
14.
Cui
,
W.
,
2002
, “
A State-of-the-Art Review on Fatigue Life Prediction Methods for Metal Structures
,”
J. Mar. Sci. Technol.
,
7
(
1
), pp.
43
56
.10.1007/s007730200012
15.
Gong
,
X. Y.
,
Chwirut
,
D. H.
,
Mitchell
,
M. R.
, and
Choules
,
B. D.
,
2010
, “
Fatigue to Fracture: An Informative, Fast, and Reliable Approach for Assessing Medical Implant Durability
,”
Fatigue and Fracture of Medical Metallic Materials and Devices, Vol.
2
,
ASTM International
,
West Conshohocken, PA
.
16.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B
,
63
(
3
), pp.
425
464
.10.1111/1467-9868.00294
17.
Mullins
,
J.
, and
Mahadevan
,
S.
,
2016
, “
Bayesian Uncertainty Integration for Model Calibration, Validation, and Prediction
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
1
(
1
), p.
011006
.10.1115/1.4032371
18.
Rubin
,
D. B.
,
1976
, “
Inference and Missing Data
,”
Biometrika
,
63
(
3
), pp.
581
592
.10.1093/biomet/63.3.581
19.
Kong
,
A.
,
Liu
,
J. S.
, and
Wong
,
W. H.
,
1994
, “
Sequential Imputations and Bayesian Missing Data Problems
,”
J. Am. Stat. Assoc.
,
89
(
425
), pp.
278
288
.10.1080/01621459.1994.10476469
20.
Hong
,
H.
,
Chu
,
H.
,
Zhang
,
J.
, and
Carlin
,
B. P.
,
2016
, “
A Bayesian Missing Data Framework for Generalized Multiple Outcome Mixed Treatment Comparisons
,”
Res. Synth. Methods
,
7
(
1
), pp.
6
22
.10.1002/jrsm.1153
21.
Ma
,
Z.
, and
Chen
,
G.
,
2018
, “
Bayesian Methods for Dealing With Missing Data Problems
,”
J. Korean Stat. Soc.
,
47
(
3
), pp.
297
313
.10.1016/j.jkss.2018.03.002
22.
Kass
,
R. E.
, and
Wasserman
,
L.
,
1996
, “
The Selection of Prior Distributions by Formal Rules
,”
J. Am. Stat. Assoc.
,
91
(
435
), pp.
1343
1370
.10.1080/01621459.1996.10477003
23.
Ling
,
Y.
,
Mullins
,
J.
, and
Mahadevan
,
S.
,
2014
, “
Selection of Model Discrepancy Priors in Bayesian Calibration
,”
J. Comput. Phys.
,
276
, pp.
665
680
.10.1016/j.jcp.2014.08.005
24.
Yan
,
X.
, and
Nie
,
J.
,
2008
, “
Creep-Fatigue Tests on Full Scale Directionally Solidified Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
044501
.10.1115/1.2901174
25.
Cabet
,
C.
,
Carroll
,
L.
, and
Wright
,
R.
,
2013
, “
Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature
,”
ASME J. Pressure Vessel Technol.
,
135
(
6
), p.
061401
.10.1115/1.4025080
26.
Barbera
,
D.
,
Chen
,
H.
, and
Liu
,
Y.
,
2016
, “
On Creep Fatigue Interaction of Components at Elevated Temperature
,”
ASME J. Pressure Vessel Technol.
,
138
(
4
), p.
041403
.10.1115/1.4032278
27.
Storgärds
,
E.
,
Simonsson
,
K.
,
Sjöström
,
S.
, and
Moverare
,
J.
,
2016
, “
Thermomechanical Fatigue Crack Growth Modeling in a Ni-Based Superalloy Subjected to Sustained Load
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012503
.10.1115/1.4031158
28.
Christ
,
H.-J.
,
2013
, “
Is Thermomechanical Fatigue Life Predictable?
,”
Procedia Eng.
,
55
, pp.
181
190
.10.1016/j.proeng.2013.03.240
29.
Wu
,
X.
, and
Zhang
,
Z.
,
2016
, “
A Mechanism-Based Approach From Low Cycle Fatigue to Thermomechanical Fatigue Life Prediction
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072503
.10.1115/1.4031908
30.
Bouchenot
,
T.
,
Cole
,
C.
,
Gordon
,
A. P.
,
Holycross
,
C.
, and
Penmetsa
,
R. C.
,
2018
, “
Application of Noninteraction Constitutive Models for Deformation of IN617 Under Combined Extreme Environments
,”
ASME J. Eng. Mater. Technol.
,
140
(
4
), p.
041008
.10.1115/1.4040223
31.
Kraemer
,
K. M.
,
Mueller
,
F.
,
Kontermann
,
C.
, and
Oechsner
,
M.
,
2020
, “
Toward a Better Understanding of Crack Growth in Nickel-Cast Alloys Under Creep-Fatigue and Thermo-Mechanical Fatigue Conditions
,”
ASME J. Eng. Gas Turbines Power
,
142
(
1
), p.
011004
.10.1115/1.4045310
32.
Irmak
,
F.
,
Gordon
,
A. P.
, and
Bouchenot
,
T.
,
2018
, “
A Reduced Order Life Prediction Modeling Approach for Materials Under Thermomechanical Fatigue
,”
AIAA Paper No. 2018-0094.
33.
Irmak
,
F.
,
2017
, “
A Flexible Physics-Based Lifing Method for Metals Under Creep and Thermomechanical Fatigue
,” Master's thesis,
University of Central Florida
,
Orlando, FL
.
34.
Barber
,
D., 2012,
Bayesian Reasoning and Machine Learning,
Cambridge University Press
,
Cambridge, UK
.
35.
Schwertel
,
J.
,
Merckling
,
G.
,
Hornberger
,
K.
,
Schinke
,
B.
, and
Munz
,
D.
,
1991
, “
Experimental Investigations on the Ni-Base Superalloy IN617 and Their Theoretical Description
,”
Winter Annual Meeting of the American Society of Mechanical Engineers
,
Atlanta, Georgia
,
Dec. 1–6
, pp.
1
6
.
36.
Rao
,
K. B. S.
,
Schiffers
,
H.
,
Schuster
,
H.
, and
Nickel
,
H.
,
1988
, “
Influence of Time and Temperature Dependent Processes on Strain Controlled Low Cycle Fatigue Behavior of Alloy 617
,”
Metall. Trans. A
,
19
(
2
), pp.
359
371
.10.1007/BF02652546
37.
Carroll
,
L. J.
,
Cabet
,
C.
,
Carroll
,
M. C.
, and
Wright
,
R. N.
,
2013
, “
The Development of Microstructural Damage During High Temperature Creep–Fatigue of a Nickel Alloy
,”
Int. J. Fatigue
,
47
, pp.
115
125
.10.1016/j.ijfatigue.2012.07.016
38.
Wright
,
J. K.
,
Carroll
,
L. J.
,
Simpson
,
J. A.
, and
Wright
,
R. N.
,
2013
, “
Low Cycle Fatigue of Alloy 617 at 850 °C and 950 °C
,”
ASME J. Eng. Mater. Technol.
,
135
(
3
), p. 031005.
39.
Shinde
,
S.
, and
Gravett
,
P.
,
2011
, “
The Effects of Dwell on the LCF Behavior of IN617
,”
International Symposium on Creep Fatigue Interactions: Test Methods and Models
,
San Antonio, TX
,
Nov. 17–19
, p.
313
.
40.
Chen
,
X.
,
Yang
,
Z.
,
Sokolov
,
M. A.
,
Erdman
,
D. L.
,
Mo
,
K.
, and
Stubbins
,
J. F.
,
2014
, “
Effect of Creep and Oxidation on Reduced Fatigue Life of Ni-Based Alloy 617 at 850 °C
,”
J. Nucl. Mater.
,
444
(
1
), pp.
393
403
.10.1016/j.jnucmat.2013.09.030
41.
Cabibbo
,
M.
,
Gariboldi
,
E.
,
Spigarelli
,
S.
, and
Ripamonti
,
D.
,
2008
, “
Creep Behavior of INCOLOY Alloy 617
,”
J. Mater. Sci.
,
43
(
8
), pp.
2912
2921
.10.1007/s10853-007-1803-7
42.
Chomette
,
S.
,
Gentzbittel
,
J.-M.
, and
Viguier
,
B.
,
2010
, “
Creep Behaviour of as Received, Aged and Cold Worked INCONEL 617 at 850 °C and 950 °C
,”
J. Nucl. Mater.
,
399
(
2
), pp.
266
274
.10.1016/j.jnucmat.2010.01.019
43.
Cook
,
R. H.
,
1984
, “
Creep Properties of Lnconel-617 in Air and Helium at 800 to 1000 °C
,”
Nucl. Technol.
,
66
(
2
), pp.
283
288
.10.13182/NT84-A33431
44.
Kim
,
W. G.
,
Yin
,
S. N.
,
Ryu
,
W. S.
, and
Jang
,
J. H.
,
2007
, “
Analysis of the Creep Rupture Data of Alloy 617 for a High Temperature Gas Cooled Reactor
,”
ASME Paper No. CREEP2007-26834.
45.
Osthoff
,
W.
,
Schuster
,
H.
,
Ennis
,
P. J.
, and
Nickel
,
H.
,
1984
, “
Creep and Relaxation Behavior of Lnconel-617
,”
Nucl. Technol.
,
66
(
2
), pp.
296
307
.10.13182/NT84-A33433
46.
Kleinpass
,
B.
,
Lang
,
K.-H.
,
Lohe
,
D.
, and
Macherauch
,
E.
,
2000
, “
Influence of the Mechanical Strain Amplitude on the in-Phase and Out-of-Phase Thermo-Mechanical Fatigue Behaviour of NiCr22Co12Mo9
,”
Thermo-Mech. Fatigue Behav. Mater.
,
3
, p.
36
.10.1520/STP15252S
47.
Burke
,
M.
, and
Beck
,
C.
,
1984
, “
The High Temperature Low Cycle Fatigue Behavior of the Nickel Base Alloy in-617
,”
Metall. Trans. A
,
15
(
4
), pp.
661
670
.10.1007/BF02644197
48.
Tsuji
,
H.
, and
Kondo
,
T.
,
1987
, “
Strain-Time Effects in Low-Cycle Fatigue of Nickel-Base Heat-Resistant Alloys at High Temperature
,”
J. Nucl. Mater.
,
150
(
3
), pp.
259
265
.10.1016/0022-3115(87)90002-X
49.
Hong
,
H.
,
Kim
,
I.
,
Choi
,
B.
,
Jeong
,
H.
, and
Jo
,
C.
,
2008
, “
Effects of Temperature and Strain Range on Fatigue Cracking Behavior in Hastelloy X
,”
Mater. Lett.
,
62
(
28
), pp.
4351
4353
.10.1016/j.matlet.2008.07.032
You do not currently have access to this content.