In this work, the damping characteristics of circular cylindrical sandwich shell with a three-layered viscoelastic composite core are investigated. The new composite core is composed of the identical inclusions of graphite-strips which are axially embedded within a cylindrical viscoelastic core at its middle surface. The physical configuration of the composite core is attributed in the form of a cylindrical laminate of two identical monolithic viscoelastic layers over the inner and outer cylindrical surfaces of middle viscoelastic composite layer so that it is a three-layered viscoelastic composite core. A finite element (FE) model of the overall shell is developed based on the layerwise deformation theory and Sander's shell theory. Using this FE model, the damping characteristics of the shell are studied within an operating frequency range after configuring the size and circumferential distribution of graphite-strips in optimal manner. The numerical results reveal significantly improved damping in the sandwich shell for the use of present three-layered composite core instead of traditional single-layered viscoelastic core. It is also found that the three-layered core provides the advantage in achieving damping at different natural modes as per their assigned relative importance while it is impossible in the use of single-layered viscoelastic core.

References

1.
Mead
,
D. J.
, and
Markus
,
S.
,
1969
, “
The Forced Vibration of a Three-Layer, Damped Sandwich Beam With Arbitrary Boundary Conditions
,”
J. Sound Vib.
,
10
(
2
), pp.
163
175
.
2.
Grootenhuis
,
P.
,
1970
, “
The Control of Vibrations With Viscoelastic Materials
,”
J. Sound Vib.
,
11
(
4
), pp.
421
433
.
3.
Plunkett
,
R.
, and
Lee
,
C. T.
,
1970
, “
Length Optimization for Constrained Viscoelastic Layer Damping
,”
J. Acoust. Soc. Am.
,
48
(
1B
), pp.
150
161
.
4.
Kerwin
,
E. M.
, Jr.
,
1959
, “
Damping of Flexural Waves by a Constrained Viscoelastic Layer
,”
J. Acoust. Soc. Am.
,
31
(
7
), pp.
952
962
.
5.
Sisemore
,
C. L.
, and
Darvennes
,
C. M.
,
2002
, “
Transverse Vibration of Elastic-Viscoelastic-Elastic Sandwich Beams: Compression-Experimental and Analytical Study
,”
J. Sound Vib.
,
252
(
1
), pp.
155
167
.
6.
Martinez-Agirre
,
M.
, and
Elejabarrieta
,
M. J.
,
2010
, “
Characterisation and Modelling of Viscoelastically Damped Sandwich Structures
,”
Int. J. Mech. Sci.
,
52
(
9
), pp.
1225
1233
.
7.
Khalfi
,
B.
, and
Ross
,
A.
,
2016
, “
Transient and Harmonic Response of a Sandwich With Partial Constrained Layer Damping: A Parametric Study
,”
Composites, Part B
,
91
, pp.
44
55
.
8.
Filippi
,
M.
,
Carrera
,
E.
, and
Regalli
,
A. M.
,
2016
, “
Layerwise Analyses of Compact and Thin-Walled Beams Made of Viscoelastic Materials
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
064501
.
9.
Jones
,
I. W.
, and
Salerno
,
V. L.
,
1966
, “
The Effect of Structural Damping on the Forced Vibrations of Cylindrical Sandwich Shells
,”
J. Eng. Ind.
,
88
(
3
), pp.
318
323
.
10.
Pan
,
H. H.
,
1969
, “
Axisymmetrical Vibrations of a Circular Sandwich Shell With a Viscoelastic Core Layer
,”
J. Sound Vib.
,
9
(
2
), pp.
338
348
.
11.
Lu
,
Y. P.
,
1977
, “
Forced Vibrations of Damped Cylindrical Shells Filled With Pressurized Liquid
,”
AIAA J.
,
15
(
9
), pp.
1242
1249
.
12.
Lu
,
Y. P.
,
Roscoe
,
A. J.
, and
Douglas
,
B. E.
,
1991
, “
Analysis of the Response of Damped Cylindrical Shells Carrying Discontinuously Constrained Beam Elements
,”
J. Sound Vib.
,
150
(
3
), pp.
395
403
.
13.
El-Raheb
,
M.
, and
Wagner
,
P.
,
1986
, “
Damped Response of Shells by a Constrained Viscoelastic Layer
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
902
908
.
14.
Chen
,
L. H.
, and
Huang
,
S. C.
,
2001
, “
Vibration Attenuation of a Cylindrical Shell With Constrained Layer Damping Strips Treatment
,”
Comput. Struct.
,
79
(
14
), pp.
1355
1362
.
15.
Alam
,
N.
, and
Asnani
,
N. T.
,
1984
, “
Vibration and Damping Analysis of a Multilayered Cylindrical Shell—Part I: Theoretical Analysis
,”
AIAA J.
,
22
(
6
), pp.
803
810
.
16.
Ramesh
,
T. C.
, and
Ganesan
,
N.
,
1992
, “
A Finite Element Based on a Discrete Layer Theory for the Free Vibration Analysis of Cylindrical Shells
,”
Comput. Struct.
,
43
(
1
), pp.
137
143
.
17.
Zheng
,
L.
,
Qiu
,
Q.
,
Wan
,
H.
, and
Zhang
,
D.
,
2014
, “
Damping Analysis of Multilayer Passive Constrained Layer Damping on Cylindrical Shell Using Transfer Function Method
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031001
.
18.
Chen
,
L. H.
, and
Huang
,
S. C.
,
1999
, “
Vibrations of a Cylindrical Shell With Partially Constrained Layer Damping (CLD) Treatment
,”
Int. J. Mech. Sci.
,
41
(
12
), pp.
1485
1498
.
19.
Wang
,
H. J.
, and
Chen
,
L. W.
,
2004
, “
Finite Element Dynamic Analysis of Orthotropic Cylindrical Shells With a Constrained Damping Layer
,”
Finite Elem. Anal. Des.
,
40
(
7
), pp.
737
755
.
20.
Saravanan
,
C.
,
Ganesan
,
N.
, and
Ramamurti
,
V.
,
2000
, “
Study on Energy Dissipation Pattern in Vibrating Fluid Filled Cylindrical Shells With a Constrained Viscoelastic Layer
,”
Comput. Struct.
,
75
(
6
), pp.
575
591
.
21.
Zheng
,
H.
,
Cai
,
C.
,
Pau
,
G. S. H.
, and
Liu
,
G. R.
,
2005
, “
Minimizing Vibration Response of Cylindrical Shells Through Layout Optimization of Passive Constrained Layer Damping Treatments
,”
J. Sound Vib.
,
279
(
3
), pp.
739
756
.
22.
Masti
,
R. S.
, and
Sainsbury
,
M. G.
,
2005
, “
Vibration Damping of Cylindrical Shells Partially Coated With a Constrained Viscoelastic Treatment Having a Standoff Layer
,”
Thin-Walled Struct.
,
43
(
9
), pp.
1355
1379
.
23.
Cao
,
X.
,
Hua
,
H.
, and
Zhang
,
Z.
,
2013
, “
Acoustic Radiation From Stiffened Cylindrical Shells With Constrained Layer Damping
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
011005
.
24.
Ramesh
,
T. C.
, and
Ganesan
,
N.
,
1994
, “
Finite Element Analysis of Cylindrical Shells With a Constrained Viscoelastic Layer
,”
J. Sound Vib.
,
172
(
3
), pp.
359
370
.
25.
Ramesh
,
T. C.
, and
Ganesan
,
N.
,
1995
, “
Vibration and Damping Analysis of Cylindrical Shells With Constrained Damping Treatment—A Comparison of Three Theories
,”
ASME J. Vib. Acoust.
,
117
(
2
), pp.
213
219
.
26.
Korjakin
,
A.
,
Rikards
,
R.
,
Altenbach
,
H.
, and
Chate
,
A.
,
2001
, “
Free Damped Vibrations of Sandwich Shells of Revolution
,”
J. Sandwich Struct. Mater.
,
3
(
3
), pp.
171
196
.
27.
Xiang
,
Y.
,
Huang
,
Y. Y.
,
Lu
,
J.
,
Yuan
,
L. Y.
, and
Zou
,
S. Z.
,
2008
, “
New Matrix Method for Analyzing Vibration and Damping Effect of Sandwich Circular Cylindrical Shell With Viscoelastic Core
,”
Appl. Math. Mech.-Engl. Ed.
,
29
(
12
), pp.
1587
1600
.
28.
Lu
,
J.
,
Xiang
,
Y.
,
Huang
,
Y.
,
Li
,
X.
, and
Ni
,
Q.
,
2010
, “
Transfer Matrix Method for Analyzing Vibration and Damping Characteristics of Rotational Shell With Passive Constrained Layer Damping Treatment
,”
Acta Mech. Solida Sin.
,
23
(
4
), pp.
297
311
.
29.
Cao
,
X. T.
,
Zhang
,
Z. Y.
, and
Hua
,
H. X.
,
2011
, “
Free Vibration of Circular Cylindrical Shell With Constrained Layer Damping
,”
Appl. Math. Mech.
,
32
(
4
), pp.
495
506
.
30.
Jin
,
G.
,
Yang
,
C.
,
Liu
,
Z.
,
Gao
,
S.
, and
Zhang
,
C.
,
2015
, “
A Unified Method for the Vibration and Damping Analysis of Constrained Layer Damping Cylindrical Shells With Arbitrary Boundary Conditions
,”
Compos. Struct.
,
130
, pp.
124
142
.
31.
Yang
,
C.
,
Jin
,
G.
,
Liu
,
Z.
,
Wang
,
X.
, and
Miao
,
X.
,
2015
, “
Vibration and Damping Analysis of Thick Sandwich Cylindrical Shells With a Viscoelastic Core Under Arbitrary Boundary Conditions
,”
Int. J. Mech. Sci.
,
92
, pp.
162
177
.
32.
Reddy
,
J. N.
,
2004
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
,
CRC Press
,
Boca Raton, FL
.
33.
Meirovitch
,
L.
,
1997
,
Principles and Techniques of Vibrations
, Vol.
1
,
Prentice Hall
,
Upper Saddle River, NJ
.
34.
Hu
,
H.
,
Belouettar
,
S.
, and
Potier-Ferry
,
M.
,
2008
, “
Review and Assessment of Various Theories for Modeling Sandwich Composites
,”
Compos. Struct.
,
84
(
3
), pp.
282
292
.
35.
Johnson
,
C. D.
, and
Kienholz
,
D. A.
,
1982
, “
Finite Element Prediction of Damping in Structures With Constrained Viscoelastic Layers
,”
AIAA J.
,
20
(
9
), pp.
1284
1290
.https://arc.aiaa.org/doi/abs/10.2514/3.51190
36.
Jones
,
R. M.
,
1998
,
Mechanics of Composite Materials
,
CRC Press
,
Boca Raton, FL
.
37.
Jones
,
D. I. G.
,
1990
, “
On Temperature-Frequency Analysis of Polymer Dynamic Mechanical Behavior
,”
J. Sound Vib.
,
140
(
1
), pp.
85
102
.
38.
Deb
,
K.
,
2012
,
Optimization for Engineering Design: Algorithms and Examples
,
PHI Learning Pvt. Ltd.
,
New Delhi, India
.
You do not currently have access to this content.