Studies on dissipative metamaterials have uncovered means to suppress vibration and wave energy via resonant and bandgap phenomena through such engineered media, while global post-buckling of the infinitely periodic architectures is shown to tailor the attenuation properties and potentially magnify the effective damping effects. Yet, despite the promise suggested, the practical aspects of deploying metamaterials necessitates a focus on finite, periodic architectures, and the potential to therefore only trigger local buckling features when subjected to constraints. In addition, it is likely that metamaterials may be employed as devices within existing engineering systems, so as to motivate investigation on the usefulness of metamaterials when embedded within excited distributed or multidimensional structures. To illuminate these issues, this research undertakes complementary computational and experimental efforts. An elastomeric metamaterial, ideal for embedding into a practical engineering structure for vibration control, is introduced and studied for its relative change in broadband damping ability as constraint characteristics are modified. It is found that triggering a greater number of local buckling phenomena provides a valuable balance between stiffness reduction, corresponding to effective damping magnification, and demand for dynamic mass that may otherwise be diminished in globally post-buckled metamaterials. The concept of weakly constrained metamaterials is also shown to be uniformly more effective at broadband vibration suppression of the structure than solid elastomeric dampers of the same dimensions.

References

1.
Cummer
,
S. A.
,
Christensen
,
J.
, and
Alù
,
A.
,
2016
, “
Controlling Sound With Acoustic Metamaterials
,”
Nat. Rev.
,
1
, p.
16001
.
2.
Liu
,
Y.
,
Shen
,
X.
,
Su
,
X.
, and
Sun
,
C. T.
,
2016
, “
Elastic Metamaterials With Low-Frequency Passbands Based on Lattice System With on-Site Potential
,”
ASME J. Vib. Acoust.
,
138
(
2
), p.
021011
.
3.
Liu
,
X. N.
,
Hu
,
G. K.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2011
, “
Wave Propagation Characterization and Design of Two-Dimensional Elastic Chiral Metacomposite
,”
J. Sound Vib.
,
330
(
11
), pp.
2536
2553
.
4.
Chen
,
J. S.
, and
Wang
,
R. T.
,
2014
, “
Wave Propagation and Power Flow Analysis of Sandwich Structures With Internal Absorbers
,”
ASME J. Vib. Acoust.
,
136
(
4
), p.
041003
.
5.
Popa
,
B. I.
, and
Cummer
,
S. A.
,
2014
, “
Non-Reciprocal and Highly Nonlinear Active Acoustic Metamaterials
,”
Nat. Commun.
,
5
, p.
3398
.
6.
Haberman
,
M. R.
, and
Guild
,
M. D.
,
2016
, “
Acoustic Metamaterials
,”
Phys. Today
,
69
(
6
), pp.
42
48
.
7.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
8.
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2014
, “
Vibration Characteristics of Metamaterials Beams With Periodic Local Resonances
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061012
.
9.
Baravelli
,
E.
, and
Ruzzene
,
M.
,
2013
, “
Internally Resonating Lattices for Bandgap Generation and Low-Frequency Vibration Control
,”
J. Sound Vib.
,
332
(
25
), pp.
6562
6579
.
10.
Huang
,
G. L.
, and
Sun
,
C. T.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031003
.
11.
Hussein
,
M. I.
, and
Frazier
,
M. J.
,
2013
, “
Metadamping: An Emergent Phenomenon in Dissipative Metamaterials
,”
J. Sound Vib.
,
332
(
20
), pp.
4767
4774
.
12.
Ba'ba'a
,
H. A.
, and
Nouh
,
M.
,
2017
, “
An Investigation of Vibrational Power Flow in One-Dimensional Dissipative Phononic Structures
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021003
.
13.
Shan
,
S.
,
Kang
,
S. H.
,
Wang
,
P.
,
Qu
,
C.
,
Shian
,
S.
,
Chen
,
E. R.
, and
Bertoldi
,
K.
,
2014
, “
Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves
,”
Adv. Funct. Mater.
,
24
(
31
), pp.
4935
4942
.
14.
Shim
,
J.
,
Wang
,
P.
, and
Bertoldi
,
K.
,
2015
, “
Harnessing Instability-Induced Pattern Transformation to Design Tunable Phononic Crystals
,”
Int. J. Solids Struct.
,
58
, pp.
52
61
.
15.
Antoniadis
,
I.
,
Chronopoulos
,
D.
,
Spitas
,
V.
, and
Koulocheris
,
D.
,
2015
, “
Hyper-Damping Peroperties of a Stiff and Stable Linear Oscillator With a Negative Stiffness Element
,”
J. Sound Vib.
,
346
, pp.
37
52
.
16.
Harne
,
R. L.
,
Song
,
Y.
, and
Dai
,
Q.
,
2017
, “
Trapping and Attenuating Broadband Vibroacoustic Energy With Hyperdamping Metamaterials
,”
Extreme Mech. Lett.
,
12
, pp.
41
47
.
17.
Bishop
,
J.
,
Dai
,
Q.
,
Song
,
Y.
, and
Harne
,
R. L.
,
2016
, “
Resilience to Impact by Extreme Energy Absorption in Lightweight Material Inclusions Constrained Near a Critical Point
,”
Adv. Eng. Mater.
,
18
(
11
), pp.
1871
1876
.
18.
Kochmann
,
D. M.
,
2014
, “
Stable Extreme Damping in Viscoelastic Two-Phase Composites With Non-Positive-Definite Phases Close to the Loss of Stability
,”
Mech. Res. Commun.
,
58
, pp.
36
45
.
19.
Virgin
,
L. N.
, and
Wiebe
,
R.
,
2013
, “
On Damping in the Vicinity of Critical Points
,”
Philos. Trans. R. Soc. A
,
371
(
1993
), p.
20120426
.
20.
Fahy
,
F.
, and
Gardonio
,
P.
,
1987
,
Sound and Structural Vibration: Radiation, Transmission and Response
,
Academic Press
,
Oxford, UK
.
21.
Cremer
,
L.
,
Heckl
,
M.
, and
Petersson
,
B. A. T.
,
2005
,
Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies
,
Springer
,
Berlin
.
22.
Ungar
,
E. E.
,
1992
, “
Structural Damping
,”
Noise and Vibration Control Engineering
,
L. L.
Beranek
, and
I. L.
Ver
, eds.,
Wiley
,
New York
.
23.
Celli
,
P.
, and
Gonella
,
S.
,
2014
, “
Laser-Enabled Experimental Wavefield Reconstruction in Two-Dimensional Phononic Crystals
,”
J. Sound Vib.
,
333
(
1
), pp.
114
123
.
24.
Overvelde
,
J. T. B.
, and
Bertoldi
,
K.
,
2014
, “
Relating Pore Shape to the Non-Linear Response of Periodic Elastomeric Structures
,”
J. Mech. Phys. Solids
,
64
, pp.
351
366
.
25.
Wang
,
P.
,
Casadei
,
F.
,
Shan
,
S.
,
Weaver
,
J. C.
, and
Bertoldi
,
K.
,
2014
, “
Harnessing Buckling to Design Tunable Locally Resonant Acoustic Metamaterials
,”
Phys. Rev. Lett.
,
113
(
1
), p.
014301
.
26.
Virgin
,
L. N.
,
2007
,
Vibration of Axially Loaded Structures
,
Cambridge University Press
,
Cambridge, UK
.
27.
Avitabile
,
P.
,
2001
, “
Experimental Modal Analysis: A Simple Non-Mathematical Presentation
,”
Sound Vib.
,
35
(1), pp.
20
31
.http://classes.engineering.wustl.edu/2009/fall/mase431/PDF/modalana.pdf
You do not currently have access to this content.