Abstract

This paper evaluates the differences between two existing ways to derive the governing equations of axisymmetric rotors in an inertial frame of reference. According to the first approach, only a skew-symmetric gyroscopic matrix appears into the equations of motion. In the second approach, besides the gyroscopic term, a convective tensor is obtained from the kinetic energy expression. This contribution is proportional to the square of the rotational speed, and it modifies the elastic energy of the rotor. The weak form of the equations of motion has been solved using high-fidelity one-dimensional finite elements, which have been developed with the Carrera Unified Formulation (CUF). The fundamental nuclei of the gyroscopic and the convective matrices are presented in CUF form, for the first time. To highlight the differences between the two approaches, numerical simulations have been carried out on relatively simple rotor configurations, whose dynamic behaviors were already studied. The current results have been compared with the solutions presented in the literature to verify the correctness of the proposed formulation. For some structures, the results computed with the two approaches differ to a significant extent.

References

1.
Dimarogonas
,
A. D.
,
Paipetis
,
S. A.
, and
Chondros
,
T. G.
,
2013
,
Analytical Methods in Rotor Dynamics
,
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
2.
Genta
,
G.
,
2005
,
Dynamics of Rotating Systems
,
Springer
,
New York
.
3.
Lee
,
C.-W.
,
1993
,
Vibration Analysis of Rotors
, Vol.
21
,
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
4.
Rao
,
J.
,
2011
,
History of Rotating Machinery Dynamics
, Vol.
20
,
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
5.
Nelson
,
H.
, and
McVaugh
,
J.
,
1976
, “
The Dynamics of Rotor-Bearing Systems Using Finite Elements
,”
J. Eng. Ind.
,
98
(
2
), pp.
593
600
.
6.
Choi
,
S.-T.
,
Wu
,
J.-D.
, and
Chou
,
Y.-T.
,
2000
, “
Dynamic Analysis of a Spinning Timoshenko Beam by the Differential Quadrature Method
,”
AIAA J.
,
38
(
5
), pp.
851
856
.
7.
Librescu
,
L.
,
Oh
,
S.
, and
Song
,
O.
,
2004
, “
Spinning Thin-Walled Beams Made of Functionally Graded Materials: Modeling, Vibration and Instability
,”
Eur. J. Mech. A
,
23
(
3
), pp.
499
515
.
8.
Kirkhope
,
J.
, and
Wilson
,
G.
,
1976
, “
Vibration and Stress Analysis of Thin Rotating Discs Using Annular Finite Elements
,”
J. Sound Vib.
,
44
(
4
), pp.
461
474
.
9.
Lee
,
H.
, and
Ng
,
T.
,
1995
, “
Vibration and Critical Speeds of a Spinning Annular Disk of Varying Thickness
,”
J. Sound Vib.
,
187
(
1
), pp.
39
50
.
10.
Sinha
,
S.
,
1988
, “
Free Vibrations of a Thick Spinning Annular Disk With Distributed Masses at the Outer Edge
,”
J. Sound Vib.
,
122
(
2
), pp.
217
231
.
11.
Shen
,
I.
, and
Ku
,
C.-P. R.
,
1997
, “
A Nonclassical Vibration Analysis of a Multiple Rotating Disk and Spindle Assembly
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
165
174
.
12.
Parker
,
R.
, and
Mote
,
C.
, Jr.
,
1996
, “
Vibration and Coupling Phenomena in Asymmetric Disk-Spindle Systems
,”
ASME J. Appl. Mech.
,
63
(
4
), pp.
953
961
.
13.
Parker
,
R.
,
1999
, “
Analytical Vibration of Spinning, Elastic Disk-Spindle Systems
,”
ASME J. Appl. Mech.
,
66
(
1
), pp.
218
224
.
14.
Jang
,
G.
, and
Lee
,
S.
,
2002
, “
Free Vibration Analysis of a Spinning Flexible Disk-Spindle System Supported by Ball Bearing and Flexible Shaft Using the Finite Element Method and Substructure Synthesis
,”
J. Sound Vib.
,
251
(
1
), pp.
59
78
.
15.
Genta
,
G.
,
1995
, “
Dynrot 7.0 a Finite Element Code for Rotordynamics Analysis
,” Dipartimento di Meccanica, Politecnico di Torino, Torino, Italy.
16.
Genta
,
G.
,
Feng
,
C.
, and
Tonoli
,
A.
,
2010
, “
Dynamics Behavior of Rotating Bladed Discs: A Finite Element Formulation for the Study of Second and Higher Order Harmonics
,”
J. Sound Vib.
,
329
(
25
), pp.
5289
5306
.
17.
Taplak
,
H.
, and
Parlak
,
M.
,
2012
, “
Evaluation of Gas Turbine Rotor Dynamic Analysis Using the Finite Element Method
,”
Measurement
,
45
(
5
), pp.
1089
1097
.
18.
Brusa
,
E.
, and
Zolfini
,
G.
,
2002
, “
Dynamics of Multi-Body Rotors: Numerical and Experimental FEM Analysis of the Scientific Earth Experiment Galileo Galilei Ground
,”
Meccanica
,
37
(
3
), pp.
239
254
.
19.
Genta
,
G.
, and
Silvagni
,
M.
,
2014
, “
On Centrifugal Softening in Finite Element Method Rotordynamics
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011001
.
20.
Wang
,
S.
,
Wang
,
Y.
,
Zi
,
Y.
, and
He
,
Z.
,
2015
, “
A 3D Finite Element-Based Model Order Reduction Method for Parametric Resonance and Whirling Analysis of Anisotropic Rotor-Bearing Systems
,”
J. Sound Vib.
,
359
, pp.
116
135
.
21.
Yu
,
J. J.
,
1997
, “
Dynamic Analysis of Rotor-Bearing Systems Using Three-Dimensional Solid Finite Elements
,”
Ph.D. thesis
, University of Alberta, Edmonton, AB, Canada.
22.
Liu
,
C.-F.
,
Lee
,
J.-F.
, and
Lee
,
Y.-T.
,
2000
, “
Axisymmetric Vibration Analysis of Rotating Annular Plates by a 3D Finite Element
,”
Int. J. Solids Struct.
,
37
(
41
), pp.
5813
5827
.
23.
Kee
,
Y.-J.
, and
Shin
,
S.-J.
,
2015
, “
Structural Dynamic Modeling for Rotating Blades Using Three Dimensional Finite Elements
,”
J. Mech. Sci. Technol.
,
29
(
4
), pp.
1607
1618
.
24.
Bediz
,
B.
,
Romero
,
L.
, and
Burak Ozdoganlar
,
O.
,
2015
, “
Three Dimensional Dynamics of Rotating Structures Under Mixed Boundary Conditions
,”
J. Sound Vib.
,
358
, pp.
176
191
.
25.
Hong
,
J.
,
Chen
,
M.
, and
Liu
,
S.
,
2007
, “
Application of Whole Engine Finite Element Models in Aero-Engine Rotordynamic Simulation Analysis
,”
ASME
Paper No. GT2007-27162.
26.
Geradin
,
M.
, and
Kill
,
N.
,
1984
, “
A New Approach to Finite Element Modelling of Flexible Rotors
,”
Eng. Comput.
,
1
(
1
), pp.
52
64
.
27.
MSC Software
,
2016
, “
MSC Nastran 2016 Rotordynamics User Guide
,” MSC Software Corporation, Santa Ana, CA.
28.
Siemens PLM Software
,
2014
, “
NX Nastran 10 Rotor Dynamics User Guide
,” Siemens Product Lifecycle Management Software Inc., Plano, TX.
29.
ANSYS
,
2013
, “
ANSYS Mechanical APDL Rotordynamic Analysis Guide: Release 15
,” ANSYS Inc., Canonsburg, PA.
30.
Kirchgner
,
B.
,
2016
, “
Finite Elements in Rotordynamics
,”
Procedia Eng.
,
144
, pp.
736
750
.
31.
Hetzler
,
H.
,
2009
, “
On Moving Continua With Contacts and Sliding Friction: Modeling, General Properties and Examples
,”
Int. J. Solids Struct.
,
46
(
13
), pp.
2556
2570
.
32.
Wagner
,
N.
, and
Helfrich
,
R.
,
2013
, “
Dynamics of Rotors in Complex Structures
,”
NAFEMS World Congress
, Salzburg, Austria, June 9–12, pp. 1–12.
33.
Carrera
,
E.
,
Filippi
,
E. M.
, and
Zappino
,
E.
,
2013
, “
Analysis of Rotor Dynamic by One-Dimensional Variable Kinematic Theories
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
092501
.
34.
Carrera
,
E.
, and
Filippi
,
M.
,
2014
, “
Variable Kinematic One-Dimensional Finite Elements for the Analysis of Rotors Made of Composite Materials
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
092501
.
35.
Carrera
,
E.
, and
Filippi
,
M.
,
2015
, “
Vibration Analysis of Thin/Thick, Composites/Metallic Spinning Cylindrical Shells by Refined Beam Models
,”
ASME J. Vib. Acoust.
,
137
(
3
), p.
031020
.
36.
Carrera
,
E.
, and
Filippi
,
M.
,
2016
, “
A Refined One-Dimensional Rotordynamics Model With Three-Dimensional Capabilities
,”
J. Sound Vib.
,
366
, pp.
343
356
.
37.
Filippi
,
M.
, and
Carrera
,
E.
,
2015
, “
Flutter Analysis of Fixed and Rotary Wings Through a One-Dimensional Unified Formulation
,”
Compos. Struct.
,
133
, pp.
381
389
.
38.
Genta
,
G.
,
Silvagni
,
M.
, and
Qingwen
,
C.
,
2013
, “
Dynamic Analysis of Rotors: Comparison Between the Simplified One-Dimensional Results and Those Obtained Through 3-D Modeling
,”
Congresso Nazionale AIMETA
, Torino, Italy, Sept. 17–20, pp. 1–10.
39.
Ferraris
,
M. L. G.
,
1990
,
Rotordynamic Prediction in Engineering
,
Wiley
,
Toronto, ON, Canada
.
You do not currently have access to this content.